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ABSTRACT 

A new “super-sequence” called CRANE has been developed to automate the 
application of reduced order modeling (ROM) to reactor analysis calculations under the 
SCALE code environment. This new super-sequence is designed to support 
computationally intensive analyses that require repeated execution of flux solvers with 
variations in design parameters and nuclear data. This manuscript provides a brief overview 
of CRANE and demonstrates its applications to representative reactor physics calculations. 
Specifically, two ROM applications are demonstrated, the intersection subspace-based 
approach for uncertainty quantification which is intended to reduce the number of 
uncertainty sources in a conventional uncertainty analysis, and the exact-to-precision 
generalized perturbation theory methodology intended as a physics-based surrogate model 
to replace the flux solver, i.e., NEWT. Our overarching goal is to provide a prototypic 
ROM capability that allows users to further explore and investigate the benefits of using 
ROM methods in their respective domain and help guide further developments of the 
methodology and evolution of the tools. 

1.  INTRODUCTION 

This manuscript introduces a new “super-sequence” CRANE, Complexity 
Reduction Algorithms in Nuclear Engineering calculation, in SAMPLER under scale6.2 
beta2 designed to enable the application of ROM for large-scale engineering calculations 
as well as to reduce the run-time of reactor physics calculations via ROM. CRANE 
implements some of the recent developments in the area of ROM, such as intersection 
subspace-based uncertainty quantification (UQ)1, and exact-to-precision generalized 
perturbation theory (EPGPT)2. CRANE automates all the steps related to the 
implementation of ROM techniques, such as subspace construction, dominant parameters 
identification/ranking, and surrogate model construction. The SAMPLER super-sequence 
is leveraged by CRANE to perform some of the tasks related to the introduction of 
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parameter perturbations, preparation of the associated perturbed input files, and the 
subsequent submission of code runs in a parallel environment3.   

ROM has been developed to address a basic challenge in reactor analysis 
calculations - that is the need to evaluate the dependence of the flux spectrum on the many 
conditions of interest to the application. For example, to perform core-wide calculations, 
one must generate few-group cross-sections that are functionalized in terms of many core 
conditions that affect the neutron spectrum, e.g., fuel temperature, coolant voiding or 
temperature, boron poison, control rod insertion, etc. Other applications such as nuclear 
fuel transport and final storage also require many flux evaluations to properly characterize 
the fuel inventory. The flux solver in SCALE is known to be few orders of magnitude 
slower than comparable codes used in the industry. Hence, this manuscript will 
demonstrate the application of ROM techniques to generate a surrogate model that can be 
used in lieu of NEWT for the wide range analysis conditions. This serves as a 
demonstration of the capability of ROM techniques, which has general applicability to 
other flux solvers. 

The fundamental idea behind ROM is to reduce the effective dimensionality of the 
associated space, e.g., parameter space, flux space, response space, etc. The reduction is 
rendered via a linear mapping between the original space variables and a set of reduced 
variables referred to the active degrees of freedom (DOFs). Due to the nature of linear 
mapping, the reduction identifies an active subspace that has a much fewer DOFs than the 
original space. The premise is that the active subspace captures the majority of the 
dominant effects, whereas all DOFs that are orthogonal to the active subspace are 
considered to have negligible impact on the responses of interest and the flux. Because the 
active subspace is generated using a randomized approach, the resulting reduction errors 
can be rigorously quantified.  

ROM first appeared in 1970s dealing with linear/nonlinear structural analysis, and 
since then have been employed and further developed by many researchers from different 
scientific backgrounds, e.g., fluid dynamics, nuclear physics, and quantum mechanics4,5. 
The essential approach utilized to construct ROM is known as proper orthogonal 
decomposition (POD) or POD of snapshots. A snapshot is denoted as the outputs of a 
model at a particular point in time or for a given parameters perturbation. In our recent 
development, we have shown that the POD of snapshots (and randomized range finding 
algorithms (RFAs), defined later) can be employed to identify an active subspace that 
approximates the dominant variations of responses of interest to a quantifiable accuracy 
with high probability6. This is one of the main advantages of ROM techniques over 
conventional surrogate methods which employ parametric functional approximations to 
replace the original physics model, such as polynomial chaos techniques, and stochastic 
collocation methods. For more details on the differences between ROM and parametric 
functional approximation techniques, see Ref. [7]   

The EPGPT approach has been developed to allow for a practical use of exact 
generalized perturbation theory in routine design reactor calculations. EPGPT first employs 
ROM to reduce the effective dimensionality of the flux space. Next, it recasts the GPT 
equations in terms of the identified active DOFs resulting from the reduction. Finally, it 
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employs a recursive approach to combine all higher order response variations to arrive at 
an analytical form that can be used as a surrogate model. The constructed surrogate 
provides an enabling tool to analyze the impact of parameters variations on the responses 
of interest as many times as needed without having to re-execute the original flux solver, 
i.e., NEWT. 

With regard to the subspace-based UQ approach, this approach is designed to first 
identify the dominant active DOFs in the parameter space prior to the execution of 
conventional UQ analysis. If the active DOFs are few, one can employ forward UQ 
techniques to determine both uncertainties and sensitivities, i.e., contribution of the various 
parameters to the total propagated uncertainties. Note that in this case the active subspace 
represents an intersection between the active subspace for the surrogate model and the 
Karhonen-Loeve subspace determined from a rank revealing decomposition of the cross-
section covariance matrix. This is because the propagated uncertainties are determined by 
the product of sensitivities of responses and uncertainties of input parameters. The key or 
dominant parameter directions contributing the most to the propagated uncertainties are 
expected to have a high net product of sensitivities and uncertainties. This criterion implies 
that parameter directions that are associated with strong sensitivities may not have a 
dominant impact on the propagated uncertainties unless their associated uncertainties are 
relatively high as well. 

2.  METHODOLOGY AND IMPLEMENTATION 

2.1  EPGPT Surrogate Model Construction 

The main difference between EPGPT and standard GPT theory9 is in the 
formulation and interpretation of the adjoint models employed to calculate responses 
variations. GPT calculates an adjoint function for the response of interest which can be 
used to calculate the first order derivatives of the given response with respect to all model 
parameters. If higher order variations are required, one must calculate additional number 
of adjoints, which typically increase with the increase in the number of model parameters 
and the sought order of variation. EPGPT however calculates a small number of adjoint 
functions corresponding to a small number of pseudo responses which represent 
randomized linear combinations of the flux values everywhere in the phase space. The 
resulting adjoints can be used to be used to analytically combine all higher order variations 
to a given preset tolerance for a general parameter perturbation. If the parameter 
perturbations are small, one can extract first-order sensitivities like GPT. With large 
perturbations however, one can use the resulting EPGPT analytical expression as a 
surrogate model for the original transport model. Previous work has demonstrated that 
EPGPT can be used to evaluate the variations in neutron flux and responses of interest due 
to various perturbations, such as cross sections, fuel enrichment, fuel densities, 
temperatures, etc., in lattice design calculations. We briefly discuss the EPGPT approach, 
and refer the reader to Ref. [2] for detailed description.  

The steady-state linear Boltzmann equation describing neutron transport can be 
represented in operator form by eigenvalue equation, 
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  0    P L F                                                                                               (1) 

where 1/ k  , and n   is the neutron angular flux. The scattering and differential 
transport operators are represented by L and the fission transport operator by F. In the 
following, we refer to the operator   P L F  as the transport operator. The neutron 

flux is normalized as follows: 

1,h                                                                                                                   (2) 

Assume that all possible state variations   belong to a subspace   of size r  

1
1 1 2 2 ;  with , ,

r
n n r

r r i i i i
i
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                       (3) 

where iq  represents an orthonormal basis vector function in the discretized scheme in the 

subspace  . If r is much smaller than n (the size of the state space), one can recast GPT in 
terms of a set of r pseudo responses. In doing so, one recognizes that the remaining n-r 
directions in the flux space have negligible impact on the response. As shown in Ref. [2], 
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where I is r by r identity matrix, and the perturbed neutron transport operator

          P L F F F . The functions  *

1

r
i

i
  are the generalized adjoint 

fluxes, which are the solutions to the generalized adjoint transport equation: 
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* * * ,  for 1, ,i
i i i

R
q N h i r







   P                                                                    (5) 

where , ,  for 1, ,i iR q i r    is the pseudo response used to capture the flux variations, 

and *P  is adjoint operator to the forward transport operator. Considering the source 
provided in Eq. (5) is orthogonal to the forward flux, i.e.  

 * , 0,  for 1, ,iiq N h i r                                                                            (6) 

thus, one can choose * ,
,  for 1, ,

,i
iq

N i r
h




   . 

This derivation shows that adjoint formulation of EPGPT is very similar to standard GPT 
with the exception of the different source formulation for the GPT equation. This implies 
that the EPGPT surrogate can be easily implemented in other computer codes which have 
a GPT capability. 

2.2  Subspace-based Uncertainty Quantification 

A basic ingredient in the ROM algorithm is the capability to perturb the model 
parameters (refers here to the multi-group cross-sections). ROM methods require two 
different modes for cross-section perturbations. An initial purely random perturbation of 
all cross-sections to identify the active subspace, followed by a selective perturbation 
approach which employs the results of the first set of code runs to either construct a 
surrogate model of identify the dominant directions for a subsequent subspace-based UQ. 
This requires a capability to introduce user-defined perturbations which is currently not 
available in the SAMPLER super-sequence. The SAMPLER generates cross-section 
perturbations that are consistent with the multi-group cross-section covariance matrix using 
the XSUSA methodology3. We therefore modify the SAMPLER perturbation routines to 
allow introduction of random and user-defined perturbations as required by the ROM 
application. 

Consider a mathematical model described by the following equation: 

 y f x                                                                                                               (7) 

where nx R  denotes the n-component vector for input parameters, and my R  represents 
the m model’s responses of interest. As discussed in the literature, one can employ the 
adjoint-based perturbation theory to calculate the sensitivity coefficients for given response 
with respect to all input parameters8, i.e.  

  ,  for 1, , ; 1, ,i
ij

j
i

y
m j n

x





 S                                                                     (8) 
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where S is denoted as the sensitivity matrix. The row space of S, denoted by  TR S  or S-

subspace, can be employed to construct an active subspace that can be used for input 
parameters space reduction. The size of the active subspace is determined by the effective 
rank of the matrix S, which can be obtained by RFAs.  

In our current implementation, the input parameters represent the nuclear cross 

sections whose uncertainties are characterized by a covariance matrix n n
x R C . The 

covariance matrix is a symmetric positive semi-definite matrix with diagonal entries 
representing the variance of the cross-sections, and off-diagonal entries representing the 
correlations therein. RFAs can also be used to identify the active subspace for  xR C , 

denoted hereinafter as C-subspace. The C-subspace identifies directions in the parameter 
space associated with high uncertainties.  

CRANE employs RFAs to identify a third subspace, referred to as the intersection 
subspace, which captures directions in the parameter space that are associated with a high 
net product of sensitivities and uncertainties. This is done via adjoint-based perturbation 
theory to compute the sensitivity coefficients of pseudo responses. A pseudo response is 
an abstraction that allows one generate randomized linear combination of the various 
model’s responses sensitivity profiles. For example, a pseudo response for the model 
represented by Eq. (7) can be defined as: 

T
pseudoy y   

where my R  represents the m model’s responses of interest, and   is an random vector. 

In current CRANE implementation, the sampling of nuclear data is accomplished in the 
following steps: 

1. Generate l random vectors 1
l

i i
mR   ; 

2. Construct l pseudo responses: 
1

,
T

i pseudo
l

i
i

Y y


 ; 

3. Compute 
,

1

i pseud

i

o
ldY

dx 
via adjoint-based perturbation theory; 

4. SVD decomposition for covariance matrix: T
x x x xC UU ; 

5. Calculate 
1, ,1/2 ,,

pseudo l pseudoT n l
x x

dY dY

d x
R

x d
 

  




G U    

6. Determine the “intersection” subspace via orthogonal decomposition of G=QR, where 

 1, , lq qQ  ; 

7. Employ RFA algorithm to identify the effective rank r of matrix Q;   
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8. Using κ-metric6 to examine the reduction errors, if the error tolerance criterion is not 
met, increase l and go back to step 1; 

9. Generate N random vectors using standard norm distribution:  ,  1,...,r
iw iR N ; 

10. Construct N parameter perturbation of the form: 1/2 , 1,2,...,i x x ix w i N  U Q ; 

11. Run SAMPLER with the determined N perturbations 
12. Statistically analyze the results for estimating mean and standard deviation. 

In step 11, we employ SAMPLER to propagate the uncertainties, this is because 
SAMPLER is able to explicitly treat resonance self-shielding effects. As can be observed, 
both SAMPLER and CRANE randomly sample the parameters, and calculate statistics on 
the response variations. The difference is that the purely random sampling approach in 
SAMPLER is guided only the prior covariance matrix, however the approach implemented 
in CRANE confines the samples to an active subspace that contains the key contributors to 
uncertainties. This is not possible with a forward sampling approach unless the number of 
samples is taken to be at least as large as the number of parameters, which is impractical 
for neutronics models. 

3.  NUMERICAL RESULTS 

A 2D PWR pin-cell model, referred to as progression problem 1a of a standard 
CASL suite for neutronics models testing, is employed here to demonstrate the 
functionality of CRANE. The pin-cell is based on a 17x17 Westinghouse standard PWR 
assembly model. The materials included in the pin-cell model are UO2, zircaloy-4, and 
water. The moderator contains soluble boron as a chemical shim for maintaining criticality, 
and the pellet-clad gap contains helium gas. This problem represents typical zero power 
isothermal conditions which are representative of power reactor startup physics testing. 
The model layout is shown in Fig. 1. The SCALE6.2B2 code package is employed9.  

 

Fig. 1. Model Layout 

The cross sections, i.e. scattering, radiation capture, fission, etc., are randomly 
perturbed using CRANE to identify the active subspace. CRANE is then employed to 
propagate the uncertainties via intersection subspace UQ method. The nominal dimension 
of input parameter space is 11,308. Fig. 2-b plots the histogram of Keff variations due to 
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cross section perturbations confined to the active intersection subspace with size of 15, i.e., 
implying only 15 dominant directions, while the reference Keff is obtained by computing 
the mean value of all perturbed cases. For comparison, Fig. 2-a plots the histogram of Keff 
variations generated via SAMPLER using the standard XSUSA approach. In addition, for 
comparison purposes, the TSUNAMI-2D was employed to compute the standard 
derivation of Keff, i.e.  Keff 625.1pcm  , via first-order generalized perturbation 

theory.    

    

 
 

 
Fig. 2. Comparison between CRANE and SAMPLER 

 
The previous model was employed to demonstrate the EPGPT functionality of CRANE. 
The nominal dimension of neutron flux space is 157,248.  The sizes of the parameters and 
flux active subspaces are 200 and 100, respectively. For a given random perturbation (Fig. 
3), the variation in the eigenvalue is 13,952 pcm, while the discrepancies in the eigenvalue 
predictions is 78.5 pcm. The discrepancies in the eigenvalue prediction between first-order 
GPT and the direct neutron transport calculations is 1107.9 pcm. Fig. 3 shows the values 
of 224 different responses of interest, i.e. group-wised mixture flux, computed by EPGPT 
surrogate model and NEWT model, respectively. 

 
Fig. 3. Response Approximation via EPGPT Surrogate 
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Fig. 2-a. Histogram of Keff Variations 
via SAMPLER 

Fig. 2-b. Histogram of Keff Variations 
via CRANE 
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An assembly model was also used to demonstrate application of EPGPT. This model layout, 
a UO2 Gösgen (ARIANE) sample11, is shown in Fig. 4. The specific enrichments for each 
of the pin types may be found in Ref. [11]. 

 

Fig. 4. Assembly model layout 

The standard SCALE 56-group cross section library (xn56v7 generated from 
ENDF/B-VII.0 64-group neutron library) is employed. The dimension of the angular flux 
is 3,929,856 (i.e. angular quadrature SN=6, 56 energy groups and 2924 cells). The flux 
predicted by the EPGPT surrogate, using a subspace with size 60, are compared to the exact 

fluxes predicted by NEWT10. We will refer to 22
/Exact E GPT ExactP

    as the 

relative error in the flux. Large number of randomized cross-section perturbations, giving 
rise to 1% change in reactivity, were used to assess the quality of EPGPT surrogate 
predictions. Specifically, the upper bounds on the flux errors are: 

2

2

5.73 4
Exact E GPTP

Exact
E

 


 


 

The corresponding upper-bound on the Keff is found to be 0.0047%, or 
approximately 5pcm. In practice, one could employ higher size for the active subspace if 
higher accuracy is required. A small value is used here to demonstrate that reasonable 
accuracy can be obtained with very small active subspace as compared to the original flux 
space. Figs. 5 and 6 show the flux spectra for fuel in two types of pins, the E test pin, and 
the S test pin as shown in Fig. 4.  
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Fig. 5. Flux spectrum for the E test pins 

 
 

Fig. 6. Flux spectrum for the S test pins 

 

4.  CONCLUSIONS 

The recently developed CRANE super-sequence has been equipped with a number of 
functionalities to support the efficient execution of uncertainty quantification and the 
construction of accuracy-preserving surrogate models. Both functionalities are currently 
fully automated in CRANE and are ready for release to interested beta users. Future work 
will focus on further customization of the tool for specific applications, e.g., generation of 
few-group cross-sections for downstream core-wide calculations.  
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