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ABSTRACT 

The Coarse Mesh Finite Difference (CMFD) method is one of the most widely used methods 

for accelerating the convergence of numerical transport solutions. However, in some situations, 

iterative methods using CMFD can become unstable and fail to converge. In this paper we 

evaluate several different modifications of the CMFD scheme that are known to stabilize the 

iterative method. We perform Fourier analysis on a linearized version of each scheme applied to 

an idealized (monoenergetic 1D infinite homogeneous medium planar SN) problem to characterize 

the stability and rate of convergence. We also compare the effectiveness of the methods 

numerically by applying each to a 2D benchmark problem and a 2D/1D solution of a standard 3D 

benchmark problem using the MPACT code. We show that several methods are capable of 

stabilizing a 2D MOC solution, and examine the advantages and disadvantages of each. The 

numerical results show that there is potential for significant reductions in MPACT run time using 

improved CMFD stabilization methods. 

Key Words: neutron transport, iteration methods, acceleration methods 

1. INTRODUCTION 

The CMFD method [1] is a very effective low-order acceleration scheme which reduces the 

number of iterations required to obtain a numerical solution to the higher-order neutron transport 

equation. Without any acceleration, source iteration methods are very slow to converge, and high 

fidelity two-and-three dimensional deterministic transport solutions would be computationally 

impractical. However, the fundamental CMFD scheme can sometimes be unstable [2], in 

particular if the coarse cell optical thickness becomes too large. To solve certain problems, the 

CMFD scheme must be modified to stabilize the iterative method. 

In this paper we look at four distinct techniques, each of which is capable of resolving 

unstable CMFD cases: 

1. Executing more than 1 inner transport sweep between each CMFD iteration 

2. Under-relaxing the �̂�
𝑘+

1

2

 in the CMFD equations 

3. Artificially increasing the diffusion coefficient �̃�
𝑘+

1

2

 

4. Refining the coarse mesh 

The first two of these techniques are widely used in current Method of Characteristics 

(MOC) codes [3,4], while the authors are not aware of any current use of the third. The fourth 
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technique does not refer to any actual modification to the scheme (so there are no corresponding 

theoretical results), but rather is simply a minor change to the discretization of the standard 

CMFD method. 

The principal motivation of this work is current interest in reducing the run time for 

MPACT, a 2D and 3D MOC neutron transport code being developed as part of the Consortium 

for Advanced Simulation of LWRs (CASL). [5] Because of its widespread success in previous 

applications, CMFD is used as the acceleration method in MPACT. However, both 2D and 3D 

benchmark problems tend to be unstable when a CMFD update is applied after each transport 

sweep. (Note: 3D problems in MPACT are typically solved with the 2D/1D method [6]).  

Therefore, multiple (usually two or three) transport sweeps must be performed before each 

CMFD update. Because transport sweeps are generally the most time-consuming portion of a 

solution, it is worthwhile to investigate alternate stabilization techniques to determine whether 

they are capable of achieving a faster rate of convergence. 

In the next section an overview of the conventional CMFD method is first provided, along 

with the details of each of the stabilization techniques. Section 3 presents the Fourier analysis of 

each technique for a model problem and a detailed discussion of the results of the Fourier 

analysis. Finally in Section 4 the different stabilization techniques are tested for the C5G7 

benchmark in 2D and 3D, and the Virtual Environment for Reactor Applications (VERA) 

benchmark problem 5 in 2D. 

2. OVERVIEW OF CMFD AND THE STABILIZATION TECHNIQUES  

2.1 Summary of CMFD Acceleration 

The standard CMFD equations for an infinite-medium 1D planar SN problem with isotropic 

scattering are presented in this section. First, we begin with the 1D planar SN equations defining a 

transport sweep: 

𝜇𝑛
ℎ𝑗
(𝜓𝑛,𝑗+1/2 − 𝜓𝑛,𝑗−1/2) + 𝜎𝑡,𝑗𝜓𝑛,𝑗 =

𝜎𝑠,𝑗

2
∑ 𝜓𝑚,𝑗𝑤𝑚

𝑁

𝑚=1

+
𝑞𝑗

2
 

 

1 ≤ 𝑗 ≤ 𝑝 (1a) 

𝜓𝑛,𝑗 = (
1 + 𝛼𝑛,𝑗

2
)𝜓𝑛,𝑗+1/2 + (

1 − 𝛼𝑛,𝑗

2
)𝜓𝑛,𝑗−1/2 

 
1 ≤ 𝑗 ≤ 𝑝 (1b) 

𝜓𝑛,1/2 = 𝜓𝑛
𝑏    ,    𝜇𝑛 > 0 

 
 (1c) 

𝜓𝑛,𝑝+1/2 = 𝜓𝑛
𝑏    ,    𝜇𝑛 < 0 

 
 (1d) 

Fine cell quantities are indexed by the subscript j, and include angular flux 𝜓, cross sections 

𝜎, thickness ℎ, and source 𝑞. The number of fine cells per coarse cell is a fixed value p. The 

angular quadrature is defined by angles 𝜇𝑛 and weights 𝑤𝑛. The cell-average angular fluxes are 

built from the cell-edge values based on a weighting scheme defined by 𝛼𝑛,𝑗. 
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The CMFD equations for this problem are presented in Eq. (2). Subscripts denote spatial (or 

angular) indices and superscripts denote iterate indices. The letters j and k refer to fine and coarse 

mesh indices, respectively. Lower and upper case letters refer to fine and coarse cell quantities, 

respectively. The “half” iteration refers to the solution after a transport sweep but before a 

CMFD update. Coarse cell quantities include surface current 𝐽, scalar flux Φ, source 𝑄, 

homogenized absorption cross section Σ𝑎, and thickness Δ. 

 𝐽
𝑘+
1
2

(𝑙+1)
− 𝐽

𝑘−
1
2

(𝑙+1)
+ Σ𝑎,𝑘

(𝑙+
1
2
)
Φ𝑘
(𝑙+1)Δ𝑘 = 𝑄𝑘Δ𝑘 1 ≤ 𝑘 ≤ 𝐾 (2a) 

 𝐽
𝑘+
1
2

(𝑙+1)
= −�̃�

𝑘+
1
2

(𝑙+1)
(Φ𝑘+1

(𝑙+1) −Φ𝑘
(𝑙+1)) + �̂� 

𝑘+
1
2

(𝑙+1)
(Φ𝑘+1

(𝑙+1) +Φ𝑘
(𝑙+1)) 1 ≤ 𝑘 <  𝐾 (2b) 

 2𝐽1
2

+ = 𝐽1
2

(𝑙+
1
2
)
+ (

Σ𝑛=1
𝑁 |𝜇𝑛|𝜓𝑛,1

(𝑙+
1
2
)
𝑤𝑛

Σ𝑛=1
𝑁 Ψ𝑛,1

(𝑙+
1
2
)
𝑤𝑛

)Φ1
(𝑙+

1
2
)
 𝑘 = 1 (2d) 

 2𝐽
𝐾+
1
2

+ = −𝐽
𝐾+
1
2

(𝑙+
1
2
)
+

(

 
 
Σ𝑛=1
𝑁 |𝜇𝑛|𝜓

𝑛,𝐽+
1
2

(𝑙+
1
2
)
𝑤𝑛

Σ𝑛=1
𝑁 Ψ𝑛,𝐾

(𝑙+
1
2
)
𝑤𝑛

)

 
 
Φ𝐾
(𝑙+

1
2
)
 𝑘 = 𝐾 (2e) 

 𝜙𝑗
(𝑙+1) =

Φ𝑘
(𝑙+1)

Φ𝑘
(𝑙+

1
2
)
𝜙
𝑗

(𝑙+
1
2
)
            𝑗 ∈ 𝑘 (2f) 

The coarse mesh scalar fluxes Φ𝑘
(𝑙+1)

 are obtained from solving Eqs. (1b) with �̂�
𝑘+

1

2

(𝑙+
1

2
)
, which 

is obtained from Eq. (2b) at the (𝑙 +
1

2
) iterate. Since the �̂�

𝑘+
1

2

(𝑙+1)
 terms are generally small, they 

are lagged from the half-iteration point in order to solve the equations. The ratio of the coarse 

cell flux is used to update the fine cell scalar fluxes. �̃�
𝑘+

1

2

(𝑙+1)
 is the standard P1 diffusion 

coefficient at the surface between coarse cell k and k+1. 

2.2 Techniques for Stabilizing CMFD 

The first technique of performing multiple sweeps is straightforward, and this has been the 

traditional approach to stabilizing the CMFD acceleration in MPACT. [3] Techniques 2 and 3 are 

simple modifications to the standard CMFD equations. The last technique (4) is to simply change 

the definition of a coarse cell to reduce the coarse cell optical thickness. The feasibility of this 

last approach depends largely on the geometry and meshing infrastructure of the code. 

2.2.1 �̂� Under-relaxation 

Under-relaxation of the balance correction term �̂� is a technique that has been known for a 

few decades but has never appeared extensively in literature. It is investigated quite thoroughly 

for a few benchmark problems in another paper at this conference. [4] Our implementation was 

based upon correspondence with the authors of this paper. The only modification is that we 

redefine �̂�: 
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�̂�
𝑘+
1
2

(𝑙+1)
=  𝜃 �̂�

𝑘+
1
2

(𝑙+
1
2
)
+ (1 − 𝜃) �̂�

𝑘+
1
2

(𝑙)
 1 ≤ 𝑘 <  𝐾 (3a) 

where 0 < 𝜃 ≤ 1 is the relaxation coefficient. For a problem that is stabilized by this technique, 

the iteration is only stable for 0 < 𝜃 ≤  𝜃𝑚𝑎𝑥 < 1. For 𝜃 close to 0, the rate of convergence is 

very slow and approaches source iteration in effect. 

2.2.2 Artificial Grid Diffusion (AGD) 

Artificially increasing the diffusion coefficient, which may be less familiar to some, is 

derived from the linearization of the partial-current CMFD (pCMFD) method, which is 

unconditionally stable with a step-characteristics discretization. [7] By increasing the diffusion 

coefficient, we attempt to reconcile the difference between the regular CMFD method and the 

pCMFD method. The diffusion coefficient in the balance Eq. (2b) is redefined: 

𝐽
𝑘+
1
2

(𝑙+1)
= −(�̃�

𝑘+
1
2

(𝑙+1)
+ 𝜂Δ𝑘)(Φ𝑘+1

(𝑙+1) − Φ𝑘
(𝑙+1)

) + �̂�
𝑘+
1
2

(𝑙+1)
(Φ𝑘+1

(𝑙+1) + Φ𝑘
(𝑙+1)

) 1 ≤ 𝑘 <  𝐾 (3b) 

The quantity 𝜂 is a dimensionless constant. The theoretically suggested value is 𝜂 =
1

4
, 

which comes from the linearization of pCMFD. However, it is not required to be exactly 
1

4
. If 𝜂 is 

increased, the spectral radius also increases and the CMFD solution becomes more flat and thus 

less useful as an acceleration of the transport solution. As 𝜂 is decreased, the rate of convergence 

can increase.  However, it reduces the region of stability for the iterative method and in the limit 

the iteration scheme will exhibit the same instabilities as traditional CMFD. Consequently, we 

may posit that there should exist some optimal 𝜂 for a given problem and if a nearly optimal 𝜂 

applies to a large class of problems then this stabilization technique becomes more attractive. 

2.2.3 Coarse mesh refinement 

Refining the coarse mesh is an effective way to improve the stability of CMFD. Choosing a 

finer radial discretization allows the CMFD to be more effective in approximating/accelerating 

toward the fine mesh transport solution. When solving the neutron transport equation on the 

regular lattice of a typical LWR, the obvious choice is to line up the coarse grid with pin cell 

boundaries – which is what is done in MPACT. To refine the coarse mesh further, the most 

practical scheme is quarter-pin CMFD cells – this preserves the highly desirable rectilinear 

nature of the coarse mesh and does not require any changes to the fine mesh of the problem (the 

pin cells are typically at least divided into octants azimuthally). This will increase the memory 

and run time for the solution of the CMFD linear system, but this usually makes up only a small 

fraction of the overall run time which is dominated by the 2D MOC sweeps. 

3. NUMERICAL FOURIER ANALYSIS 

The theoretical analysis here very closely follows the procedure outlined by Larsen and 

Kelley [8]. Due to space constraints, most of the steps are omitted, but the interested reader 

should consult the literature to see the complete derivation of this system.  

Since CMFD is a nonlinear method, it must first be linearized to facilitate spectral analysis. 

We expect the behavior of CMFD to be very similar to its linearized form, and this expectation is 
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verified experimentally by Larsen and Kelley [8]. To obtain a set of equations for the growth 

factors of the iterative methods, it is necessary to apply them to an idealized problem. We applied 

these methods to the monoenergetic infinite homogeneous medium fixed-source 1D planar SN 

equations (Eqs. 1) with a step-characteristics discretization. The Fourier ansatz is: 

 𝑞𝑗 = 0 (4a) 

 
𝜓
𝑛,𝑗′−

1
2

(𝑙+
1
2
)
= 𝜔𝑙𝑑𝑛,𝑗𝑒

𝑖𝜆Σ𝑡𝑥𝑘 (4b) 

 
𝜓
𝑛,𝑗′

(𝑙+
1
2
)
= 𝜔𝑙𝑎𝑛,𝑗𝑒

𝑖𝜆Σ𝑡𝑥𝑘 (4c) 

 𝜙
𝑗′
(𝑙)
= 𝜔𝑙𝑔𝑛,𝑗𝑒

𝑖𝜆Σ𝑡𝑥𝑘 (4d) 

 𝐹0,𝑘
(𝑙+1)

= 𝜔𝑙𝐹𝑒𝑖𝜆Σ𝑡𝑥𝑘  (4e) 

 

The first subscript n denotes quadrature index and the second subscript j or k denotes fine or 

coarse mesh index. The superscript l denotes iteration index. 𝜓 and 𝜙 are the fine cell angular 

and scalar fluxes, respectively. 𝑞 is the source, which is assumed to be zero to simplify the 

analysis. 𝐹0,𝑘 is the additive correction to the scalar fluxes for fine cells within coarse cell k. 𝜔 is 

the growth mode, which depends on the error mode 𝜆. After substituting this ansatz into the 1D 

planar SN equations (Eq. 1) and a linearized form of Eq. 2, we have a system of equations for the 

coefficients an,j, dn,j, gj, and F. The coefficients of the matrix are dependent on both the frequency 

of the error mode 𝜆 and the coarse cell optical thickness Σ𝑡𝑝ℎ. By searching over the full 

frequency domain of 𝜆 while maintaining a fixed number of fine cells per coarse cell p and fine 

cell optical thickness Σ𝑡ℎ, we can determine the theoretical spectral radius of the iterative method 

for that particular CMFD mesh. Because the problem is periodic, only a finite domain of 

𝜆 ∈ [0, 𝜋] must be searched. Due to the discrete nature of the solution, higher frequency error 

modes cannot exist on the grid and will be represented as a lower frequency which falls in this 

range. With some linear algebra the system can be reduced to an eigenvalue problem for growth 

factors 𝜔𝑗. We compute these eigenvalues numerically as discrete functions of 𝜆, and use a 

bisection method to calculate the spectral radius 

 𝜌 = sup
𝜆
sup
1≤𝑗≤𝑝

|𝜔𝑗(𝜆)| (5) 

The spectral radius is computed over a logarithmically-spaced set of coarse cell optical 

thicknesses to obtain a set of values that accurately describes the true spectral radius as a 

function of the mesh size. 

3.1 Numerical Results 

 Fig. 1 shows the results of applying this analysis to the standard linearized CMFD 

equations. For lower scattering ratios c, the scheme is stable for all coarse cell sizes. For 

scattering ratios closer to unity, the scheme becomes unstable for cells of an intermediate optical 

thickness, beginning at a thickness of approximately 2 mean-free-paths. 

Fig. 2 shows the effect of executing multiple sweeps between each CMFD update. Because 

the definition of an iteration includes many transport sweeps, the spectral radius decreases. The 

thin- and thick-cell asymptotic values decrease, as well as the wide peak in the region of 

intermediate cell sizes. The initial size of the peak is very large for c close to unity, and increases 
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with c. For any scattering ratio c < 1, there is some number of sweeps that will reduce the 

magnitude of the peak enough such that the iteration will be stable.  

 

Figure 1: Spectral Radius for Standard 

CMFD, p = 4 

 

Figure 2: Spectral Radius for Technique 1,  

p = 4 and c = 0.95 

Fig. 3 shows the smoothing effect of CMFD under-relaxation on the spectral radii. Under-

relaxation reduces the magnitude of the spectral radius peak, but at the same time it also slows 

the convergence for optically thin cells. Much like multiple sweeps, there appears to be some 

level of under-relaxation 0 < θ < 1 that can reduce the peak enough to stabilize the iteration for 

any c. However, for c close to unity, the required θ may be so small that there will be little or no 

improvement compared to source iteration. 

  

Figure 3: Spectral Radius for Technique 2,  

p = 4 and c = 0.95 

 

Figure 4: Spectral Radius for Technique 3,  

p = 4 and c = 0.95 
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Fig. 4 shows the stabilizing effect of the AGD modification (η = 0.25). The unstable peak in 

spectral radius is almost completely eliminated. The convergence rate is slightly slower for 

optically thin cells. Fig. 5 shows how the AGD technique mitigates the negative growth modes, 

which are responsible for the instabilities, while slightly increasing the positive growth factors.

 

Figure 5a: Largest Magnitude Positive 

Growth Factors for p = 4 and c = 0.95 

 
 

Figure 5b: Largest Magnitude Negative 

Growth Factors for p = 4 and c = 0.95 

3.2 Discussion 

3.2.1 Multiple Transport Sweeps 

Executing multiple sweeps inside each outer iteration improves the effectiveness (i.e. 

reduces the spectral radius) of each outer iteration. For optically thin cells, the improvement does 

not make up for increased cost, so it is more effective to perform the CMFD update after each 

transport sweep. For cells greater than approximately one mean-free-path thick, it is more 

effective to perform multiple transport sweeps between each CMFD update. This technique 

reduces the magnitude of the large peak for intermediate-to-large optical thickness CMFD cells, 

and increases the range of stability for the iterative method. Note, however, that the method does 

not become unconditionally stable for scattering ratios arbitrarily close to unity.  

3.2.2 �̂� Under-relaxation 

Under-relaxing the �̂�
𝑘+

1

2

(𝑙+1) terms increases the positive growth factors while decreasing the 

magnitude of the negative growth factors. This reduces the magnitude of the peak in the unstable 

region, but at the cost of pushing the positive growth factors higher and thus slowing down 

convergence in those regions. 

3.2.3 Artificial Grid Diffusion (AGD) 

Artificially increasing the diffusion coefficient virtually eliminates the negative growth 

factors, making the iteration unconditionally stable. However, it also makes the CMFD solution 
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more diffusive (i.e. a poorer approximation to the transport solution), which slightly reduces its 

effectiveness. This decrease in effectiveness shows up as a shift towards smaller cells in the 

transition region from rapid convergence to slow convergence. For optically thin cells, CMFD is 

highly effective and the positive growth factors asymptotically approach a minimum. For 

optically thick cells, CMFD is ineffective and the positive growth factors approach that of a 

regular source iteration (the scattering ratio c). The transition from high to low effectiveness 

occurs for cells that are between 1 and 10 mean-free-paths thick, approximately. Increasing the 

diffusion coefficient shifts this transition toward thinner cells, so that for any cells between about 

0.1 and 5 mean-free-paths thick (most practical cases), the largest positive growth factor is 

slightly larger. 

3.2.4 Coarse Mesh Refinement 

In all cases examined here, the spectral radius is strictly increasing from the thinnest coarse 

cells up to the peak from negative growth factors. Since this peak occurs for very optically thick 

cells, in most applications an unstable iterative method is on the increasing (with thickness) side 

of that peak. Decreasing the coarse cell size effectively moves the iterative method to the left on 

these curves, potentially stabilizing unstable growth modes, while also increasing the rate of 

convergence of the modes which were already stable. 

4. EXPERIMENTAL RESULTS 

The stabilization techniques described in this paper were evaluated using the C5G7 

Benchmark problem which is a well-established transport benchmark problem consisting of 

17x17 UO2 and MOX fuel lattices [9].  A 2D version of the benchmark was analyzed on a single 

processor and the 3D C5G7 problems (unrodded and rodded configurations) were decomposed 

spatially into 18 axial planes and run on 18 processors.  

Since the CMFD solution is relatively inexpensive, the total number of transport sweeps 

required to reach the converged solution is an appropriate and simple metric for the numerical 

effectiveness of a stabilization technique. It should also be noted that the respective 

computational kernels for 2D MOC and for the solution of the CMFD linear system are not fully 

optimized in MPACT. Therefore, the benefit of trading off MOC sweeps for CMFD solves may 

not necessarily be reflective of other codes. 

4.1 2D C5G7 Results 

The 2D C5G7 results are given in Table I, and as indicated the use of multiple sweeps was 

faster than the under-relaxation and AGD for 2D problems. Under-relaxation and AGD both 

required more overall transport sweeps than the first technique. This makes sense since both of 

these techniques achieve stabilization at the cost of convergence rate. While multiple sweeps is 

less effective for optically thin coarse cells, CMFD is most effective for thin coarse cells, so they 

are unlikely to dictate the convergence of the problem. The MOC time improvement from 

reducing the number of inner sweeps from 2 to 1 was not very significant. Refining the coarse 

grid reduced the number of transport sweeps from 22 to 10, but the MOC time was only reduced 

by approximately 25%. As a result, the increase in CMFD solution time and initialization time 
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mostly counteracted the MOC savings. Fig. 6 shows the convergence of the norm of the fission 

source error for the runs summarized in Table I. The refined coarse mesh significantly improves 

the convergence rate. Under-relaxation and AGD decrease the asymptotic convergence rate 

compared to multiple sweeps, but their initial convergence is more rapid because the CMFD 

updates are being applied more frequently. Techniques 1 and 2 had essentially identical run 

times, while 3 and 4 were slightly slower and faster, respectively. 

Table I. Run Time Comparisons for C5G7 2D Benchmark Problem 

Technique Θ η Inners Outers Run Time (s) Speedup MOC (s) CMFD (s) k-eff 

1 1.00 0.00 2 11 588 1.00 543 42 1.186112 

2 0.72 0.00 1 18 589 1.00 515 72 1.186113 

3 1.00 0.25 1 19 614 0.96 542 69 1.186138 

4 1.00 0.00 1 10 562 1.05 413 138 1.186301 

 

 
Figure 6: Fission Source Convergence 

C5G7 2D 

 
Figure 7: Fission Source Convergence 

C5G7 3D (unrodded) 

4.2 3D C5G7 Results 

For 3D problems, the 2D MOC solution is coupled to a 1D axial solution, which is only 

updated once every outer iteration. This increases the penalty of executing multiple sweeps per 

outer iteration because the axial solution needs a certain number of iterations to converge. This 

implies that if the code performs multiple 2D MOC sweeps per axial solution update, it may end 

up performing many more 2D MOC sweeps than are really necessary to sufficiently converge to 

a solution. If the only one inner 2D MOC sweep is performed per outer iteration, the code will 

only have to perform the minimum number of 2D sweeps necessary to converge the 2D/1D 

solution. Thus, there is a benefit to performing only one inner sweep per outer iteration. This 

results in an advantage to techniques 2, 3, and 4 compared to technique 1 for 2D/1D problems. 
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Note that the quarter-pin cell solution provides a slightly different k-eff because the axial 

part of the 2D/1D solution is also refined, which provides more spatial shape to the axial 

transverse leakage and therefore an improved overall 3D solution. 

Table II. Run Time Comparisons for C5G7 3D Benchmark Problems 

Case Technique Inners Outers 
Run Time 

(min) 
Speedup 

MOC 
(min) 

CMFD 
(min) 

keff 

unrodded 1 2 14 87 1.00 82 1 1.142310 

unrodded 2 1 25 81 1.07 74 3 1.142311 

unrodded 3 1 25 79 1.09 73 3 1.142311 

unrodded 4 1 13 57 1.53 40 5 1.142142 

rodded A 1 2 14 77 1.00 71 1 1.127395 

rodded A 2 1 25 79 0.97 73 2 1.127395 

rodded A 3 1 25 81 0.95 73 4 1.127395 

rodded A 4 1 13 59 1.32 40 12 1.127230 

rodded B 1 2 14 78 1.00 72 1 1.076568 

rodded B 2 1 26 88 0.89 79 4 1.076568 

rodded B 3 1 26 83 0.94 76 3 1.076568 

rodded B 4 1 13 60 1.30 41 12 1.076421 

Fig. 7 shows the convergence of the norm of the fission source error for the 3D C5G7 

unrodded case. The 2 inners case converges more slowly, presumably because of the lower rate 

of axial solution updates. As a result, the performance of technique 1 is poorer than the other 

three techniques. Under-relaxation and AGD converge very similarly in all three cases. The 

quarter-pin coarse mesh case converges at a higher asymptotic rate. Although techniques 2 and 3 

slightly reduced the total number of transport sweeps, the total MOC time was not reduced in all 

cases. This is likely due to the fact that the last inner of any outer iteration is slightly more 

expensive because of the need to store certain quantities, such as the surface currents for CMFD. 

Technique 4 reduced the total number of inners by about 50%, which produced a significant 

speedup, even with the increased CMFD time. 

4.3 VERA Problem 5 2D results 

The stabilization techniques were also tested on VERA benchmark problem 5 which, unlike 

C5G7, is an accurately and explicitly modeled PWR geometry. [10] The problem is a 2D slice of 

the Watts Bar Nuclear 1 startup core, with Westinghouse 17x17-type fuel assemblies at 

beginning-of-life and hot zero power isothermal conditions. Technique 4 was not tested on this 

problem because the mesh is generated automatically by MPACT, so refining the coarse mesh 

would be a significant undertaking, and would most likely be fruitless considering the C5G7 2D 

results showed only a small improvement by using a finer coarse mesh. In fact, it is apparent that 

all of the single-sweep stabilization techniques are more effective for 2D/1D problems than they 

are for simpler 2D problems. The timing results are given in Table III; while techniques 2 

(unrodded) and 3 (rodded) reduced the overall number of transport sweeps, the MOC time was 

still lower for technique 1, and as a result techniques 2 and 3 produced a significant slowdown. 
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Note that this benchmark problem is stable without any of the techniques being applied (just 1 

inner transport sweep) and converges in 14 outer iterations. However, the techniques were still 

applied to study the improvement (or detriment) of the convergence rate. For technique 2, the 

under-relaxation factor was 0.9. 

Table III. Run Time Comparisons for VERA Benchmark Problem 5-2D 

case Technique Inners Outers 
Run  

Time (hr) 
Speedup 

MOC 
(hr) 

CMFD 
(hr) 

keff 

unrodded 1 2 8 12.0 1.00 6.6 4.8 1.003059 

unrodded 2 1 16 16.4 0.73 7.3 8.4 1.003059 

unrodded 3 1 15 17.6 0.68 6.8 10.0 1.003059 

rodded 1 2 8 12.7 1.00 6.4 5.6 0.990783 

rodded 2 1 14 15.3 0.83 6.9 7.8 0.990783 

rodded 3 1 19 20.2 0.63 8.0 11.5 0.990783 

5.  CONCLUSIONS AND FUTURE WORK 

This paper evaluated several different possible techniques for stabilizing the CMFD method 

to accelerate MOC solutions of the neutron transport equation.   Fourier analysis was performed 

on a linearized version of each scheme and applied to an idealized (1D infinite homogeneous 

medium planar SN) problem to characterize the stability and rate of convergence. The 

effectiveness of the techniques was then evaluated numerically by applying each to a 2D 

benchmark problem and a 2D/1D solution of a standard 3D benchmark problem using the 

MPACT code.  

All four CMFD stabilization techniques demonstrated the ability to numerically stabilize 

CMFD consistent with the Fourier analysis. For the 2D C5G7 problem, the multiple sweeps 

technique was effective because the 2D/1D penalty of multiple sweeps only applies to 3D 

problems. However, for the 3D C5G7 benchmark problems, the penalty was significant and 

technique 4 performed significantly better than technique 1. The results were mixed for 

techniques 2 and 3. 

While under-relaxation and AGD performed better than the traditional technique for all of 

the 3D C5G7 problems, it is not clear from the fission source convergence plots that they would 

generally converge more quickly. The asymptotic convergence for these problems is distinctly 

less steep than it is for the traditional technique. The principle reason these techniques perform 

better is that the traditional technique struggles early in the iteration because the coupling 

between the 2D and 1D solutions is not yet well converged at this point. 

Measuring performance by the total number of transport sweeps, techniques 2 and 3 were 

comparable to technique 1 for VERA Problem 5-2D. However, they were about 20-35% slower 

in overall run time because of the increased CMFD time. Even when the overall number of 

transport sweeps was reduced, the time required for MOC was not. 
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For the C5G7 problems, the quarter-pin cell coarse mesh is the most effective technique for 

stabilizing and improving convergence of a 2D/1D solution in MPACT. However, the inputs to 

test this technique were specifically designed for this work without changing the code in any 

way. To modify the code to automatically generate the quarter-pin cell CMFD mesh would 

require significant reworking of the input processing and auto-meshing routines. Further 

numerical testing of all of the techniques in MPACT is necessary to fully characterize the 

advantages and disadvantages of each and eventually come to a defendable conclusion about 

which technique is most efficient. This will likely involve developing a figure-of-merit which 

considers the run time, memory requirements, relative stability, and other performance metrics of 

the techniques with an appropriate importance assigned to each metric. Such a thorough analysis 

should allow for an empirical determination of which technique requires the shortest run time 

across all relevant problems, or at least a subset of the most relevant problems. 
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