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ABSTRACT  

This paper presents the development and preliminary validation of the transient transport 

capability within the framework of the pin resolved, 2D-1D method in the core neutronics code 

MPACT.  A description of the transient methodology developed in MPACT is first provided and 

then two alternative transient CMFD acceleration techniques are described, a one group (1G) and 

a multigroup (MG) CMFD. Results show that the MG CMFD is more effective for practical 

transient problems.  The NEM nodal transient method is then presented as the 1D axial solver for 

the 2D-1D method in MPACT.  Numerical results are then presented for the 2D TWIGL and 3D 

SPERT benchmarks. The TWIGL results from MPACT are shown to agree well with the DeCART 

transport code and other reference solutions.  Preliminary results are then shown for the SPERT III 

test 86 case and the MPACT result is shown to be in reasonable agreement with the experimental 

data. 

Key Words: Transient, MOC, CMFD, TWIGL, SPERT, MPACT 

1  INTRODUCTION 

MPACT [1, 2] is a three-dimensional (3-D) whole core transport code that is capable of 

generating sub-pin level power distributions. This is accomplished by obtaining the integral 

transport solutions to the heterogeneous reactor problem in which the actual pin-resolved 

geometrical configuration of fuel components such as the pellet and cladding is explicitly 

retained during the flux solution. The cross section data needed for the neutron transport 

calculation are obtained directly from a multi-group microscopic cross section library similar to 

those used in lattice physics codes. Hence MPACT involves neither a priori homogenization nor 

group condensation for the core spatial solution.  

The steady-state integral transport solution is obtained by a means of the method of 

characteristics (MOC) which employs discrete ray tracing. Since the direct application of MOC 

to a 3-D core configuration requires considerable amounts of memory and computing time for 

practical reactor applications, an alternative approximate 3-D solution method was implemented 

in MPACT based on a 2D-1D approach which employs planar MOC solutions in the framework 

of the 3-D coarse mesh finite difference (CMFD) formulation [3]. The axial coupling is resolved 
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by one-dimensional (1-D) diffusion solutions and the planar and axial problems are coupled 

through the transverse leakage. The use of a lower order 1-D solution in the axial direction is 

justified by the fact that most heterogeneity in the core occurs in the radial direction rather than 

the axial. However, it can be easily replaced by a higher order method such as the 1-D SN if 

greater solution accuracy is needed. 

The transient capability was recently designed and implemented in MPACT based on the 

MOC fine mesh in order to capture the pin-resolved transient power distribution. The first 

section of this paper describes the transient methodology including the formulation for 2D MOC, 

3D CMFD and 1D NEM methods. The second section then presents the numerical results of 2D 

TWIGL and 3D SPERT benchmarks. The CMFD coarse mesh based whole core adjoint flux 

calculation capability is also implemented in MPACT and its comparison with MOC based 

adjoint flux calculation is presented in [4]. 

2 TRANSIENT METHODOLOGY 

In order to determine the time-dependent pin-resolved power distribution, the transient 

calculation in MPACT is performed based on the MOC flat source region rather than CMFD 

coarse mesh.  For this, the 3D problem domain is first divided into several thick planes and radial 

flux distribution is solved using the 2D MOC method. The axial coupling is resolved by one-

dimensional (1D) diffusion solutions and the planar and axial problems are coupled through the 

transverse leakage. The use of a lower order 1D solution in the axial direction is justified for 

most PWR applications since most heterogeneity in the core occurs in the radial direction rather 

than the axial.   A 3D CMFD formulation is developed and used to accelerate the 2D radial and 

1D axial solution.  

In the following section, the derivation of the MPACT transient solution method begins with 

the formulation of the multi-group MOC transient fixed source problem (TFSP) which involves 

the time discretization based on the implicit Euler method and the precursor integration 

technique.  The formulation of the CMFD method is then introduced and two different CMFD 

iteration schemes were implemented and investigated. The 1G CMFD method updates the 

transient source based on the current iterate coarse mesh flux and fission source.   The 1G CMFD 

method is shown to require multiple iterations until the transient and fission source are 

converged.  In contrast, the MG CMFD method is more efficient since it adds the transient 

source into the CMFD matrix and solves the whole matrix in one iteration.  

Finally, a two-node NEM kernel is presented in which a second order polynomial is used to 

approximate the transient source term.   Because the same order of polynomial approximation is 

used for the transient and the steady-state solutions, the existing NEM method was simply 

modified by adding a transient source into the radial transverse leakage term to solve the 

transient problem. 

2.1 Formulation of 2D MOC Transient Fixed Source Problem 

The time dependent form of the planar transport problem which is obtained after integration 

of the angularly discretized 3-D Boltzmann transport equation can be written as follows for angle 

m: 
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where 
m

g , g ,  , and dS are the angular flux of angle m, scalar flux, total fission source, 

and delayed neutron source respectively, which are all axially averaged, whereas 
m

gT  and m

gB  

are the angular fluxes at the top and bottom of the plane.  

In addition, six more precursor equations are described below: 

                                              , 1,2,...,6k
k k k

dC
C k

dt
                                                          (2)                                                                            

       where kC  is the delayed neutron precursor density, and   and dS  are the total fission 

source and the delayed neutron source defined as: 
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In the above equations, the  value is adjusted by the eigenvalue determined in the initial 

steady-state calculation. 

For a given time step size nt  at time step n, Eq. (1) can be discretized using the implicit 

Euler method as: 

                                                         

, , 1

,

m n m n

g g m n

gm

g n

R
v t

  



                                                              (5) 

       with nm
gR ,  denoting all the right hand side terms of Eq. (1) at time step n.  

       Eq. (5) can be rewritten as: 

 

                                                     

, , 1

,

m n m n

g gm n

gm m

g n g n

R
v t v t

  

 
 

                                                              (6) 

The RHS terms of Eq. (6) are all known from the solution of the previous time step and the 

flux at the current time step is the unknown to be determined. Eq. (6) cannot be solved unless 

time differencing is performed to the precursor balance equation since the nm
gR ,  term contains the 

delayed neutron source term which involves the unknown delayed neutron precursor 

concentrations at time step n. To avoid the time differencing of the precursor equation, one can 
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eliminate the unknown precursor term 
n

kC  from nm
gR ,  by introducing the second order precursor 

integration technique [5] which is based on the second order variation of the fission source 

during the current time step. As a result, the delayed neutron source can be expressed as: 
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By inserting the delayed neutron source terms determined by the previous time step values, 

Eq. (8), into Eq. (6) and expressing all the terms of 
nm

gR ,
 explicitly, one can obtain the following 

transient fixed source problem: 
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In principle, Eq. (10) can be solved by MOC as long as the RHS is exactly known for each 

flat source region. However, there are several practical difficulties in solving Eq. (10). First, the 

total cross section is augmented by the 1/vt term. This augmentation changes the ray attenuation 

characteristics in the MOC solution since all the exponential terms have to be evaluated with the 

augmented cross section. Secondly, since the angular flux of the previous step appears on the 

RHS, all the angular flux should be stored at every flat source region, which would cause a 

significant increase in the memory.  

In order to avoid these problems, the 1/vt term of the current time step is first moved to the 

RHS so that the left hand side becomes identical to the steady-state form. The angular 

dependence of the 1/vt term is then neglected by treating this term as isotropic. This 

approximation would have negligible impact since the isotropy assumption is applied to the 

difference term, rather than the angular flux itself. Furthermore the angular dependence of the 

residual term is neglected. Eq. (10) now becomes 
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Once the delayed neutron source and the residual terms are given for each flat source region, 

Eq. (11) can be solved using the steady-state MOC solver with only a few additions of source 

terms. The final equation becomes: 
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Since (1 )g pg dg       , the transient source in Eq. (12) can be defined and simplified 

as:  
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In order to work with CMFD acceleration and nodal NEM method, the transient source is 

rearranged as below: 
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where A and B are flux and fission source-dependent terms, while C is a constant term: 
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2.2 Coarse Mesh Finite Difference (CMFD) acceleration 

Two types of CMFD acceleration methods were developed in MPACT for the transient 

calculation, a one-group (1G) CMFD and a multi-group (MG) CMFD. The 1G CMFD solves the 

CMFD equation group by group and requires multiple iterations to converge the final solution, 

especially for transient problems with a large power change.  The MG CMFD formulates one 

single matrix for the whole 3D CMFD problem and uses PETSc [6] to solve the Ax=b problem. 

The MG CMFD is recommended since it formulates the entire CMFD matrix and the transient 

fixed source problem is solved in one iteration which runs much faster than 1G CMFD for all 

problems analyzed here. 

2.2.1 1G CMFD Formulation 

Similar to the MOC equation, the CMFD based neutron balance equation can be easily 

formulated by adding a transient source term. The transient source in the equation is CMFD 

coarse mesh based and is homogenized based on the flat source fine mesh. 
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       Instead of homogenizing the fine mesh transient source term, the transient source 

coefficients A, B and C are homogenized by the following equation: 
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As a result, the CMFD transient source can be updated by the new CMFD flux and fission 

source:  

                                                 ,

,

mm n m n m n

tr g g gS A B C                                                              (18) 

       The 1G CMFD acceleration technique is similar to the traditional steady-state CMFD 

acceleration technique, however the 1G transient CMFD does not need to update the eigenvalue 

for each CMFD iteration.   In each CMFD iteration, the transient source is updated using the new 

calculated CMFD flux and fission source using Eq. (18) and added to the right hand side as a 

source term. The steady-state CMFD then is used to calculate the transient CMFD fixed source 

problem.  

       The flow chart is shown in Figure 1. One disadvantage of the 1G method is that it needs 

multiple CMFD iterations to converge before each MOC solve and the number of iterations can 
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be very large for transient problems with large power changes since the right hand side (fission 

source and transient source) can change considerably during an each transient step.  

2.2.2 MG CMFD Formulation 

In order to improve the slow convergence of the 1G CMFD, a MG CMFD method was 

developed. The basic idea of this method is to add a transient source coefficient into the CMFD 

matrix and solve the whole matrix in one iteration. Unlike the steady-state eigenvalue 

calculation, the transient calculation does not need to update the eigenvalue during a transient 

step.   As a result, the CMFD flux dependent source (including the transient source and fission 

source) on the right hand side in the transient matrix can be moved to the left hand side and the 

matrix can then be solved in one iteration.  

The following notations are used to summarize the matrix operations: 

o Removal term: +  
t

M D Σ  

o Scattering:  SS Σ  

o Fission source: / effk fF χ Σ  

o The transient source is defined in equation Eq. (14) : 
tr    S A BF C  

o Scalar flux vector:   

The neutron balance equation for the MG CMFD is: 

                                                     ( )       M S F A BF C                                     (19) 

Moving the flux dependent term from right hand side to the left hand side, this becomes: 

                                                           ( )    M S F A BF C                                        (20) 

The above equation is a standard linear system and the unknown flux can be solved in one 

iteration using any matrix inversion method. Another advantage of this method is the unknown 

flux calculated by the MG CMFD is fully converged while the 1G CMFD only converges to the 

convergence criteria specified by user input, which is typically set to 1E-4 in MPACT. 
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Figure 1 Flow chart for 1G (left) and MG (right) CMFD 
 

2.3 Transient Two-Node NEM Formulation 

The TFSP of Eq. (12) contains the axial net current which is to be determined by the Nodal 

Expansion Method (NEM).   Specifically, the net current is solved for the given incoming current 

boundary condition specified at the top and bottom surfaces of the node. To derive an expression 

that represents the net current in terms of the incoming partial current and the node average flux, 

the one-dimensional, one-group continuous form of the TFSP can be written as follows: 
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where the radial transverse leakage is defined as: 
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and the transient source is defined as: 
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It is assumed here that the fission source and fluxes of the other groups as well as the last 

three terms originating from the previous time step are all known and the incoming currents are 

specified at the top and bottom surfaces of the node. 

In principle, the steady-state NEM equation can be solved by using a fourth order 

polynomial expansion for the flux, a second order polynomial for the transverse leakage term 

and a fourth order polynomial expansion for the fissions source term. For brevity the detailed 

expressions for the coefficients are not given here and can be found in [5]. 

        A second order polynomial expansion is used to approximate the transient fixed source 

term: 
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        The transient source moments are calculated as follows: 
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                 (25) 

Where ,0trs , ,1trs  and ,2trs  are 0th, 1st, and 2nd transient source moments, 
n

trS  is the average 

transient source in the node and h  is the length of the node. The superscript c, l and r denote the 

current, left and right node, respectively.  

       Due to the use of a second order approximation of the transient source, which is identical to 

the treatment of the radial transverse leakage term, the NEM solver used for the steady-state 

calculation can be used almost directly by adding the transient source term into the transverse 

leakage term. 

2.4 Iteration Strategy 

The overall iteration scheme of the MPACT transient algorithm is shown in Figure 2. The 

2D MOC transport problem or the 2D MOC/1D NEM problem are iteratively solved with 2D or 

3D CMFD acceleration until the convergence criteria are satisfied.  
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Figure 2 MPACT transient iteration scheme 
 

3 NUMERICAL RESULTS 

3.1 TWIGL Benchmark Problem 

The TWIGL benchmark problem [7] was used to test and verify the transient solution 

methodology in MPACT. TWIGL is a simple quarter-symmetric reactor with three different 

homogeneous regions (see Figure 3). The initial state of the reactor has regions 1, 2 and 3 

composed of materials 1, 2, and 3, respectively. Following the initial state, the material 

composition of region 1 is perturbed as described in Table III.  

Start One Transient Step 

Iterate to next outer 

iteration 

2D MOC solve 

Next Transient Step 

 
Converged? 

Yes 

No 

Calculate transient source 

on flat source region in the 

form of Eq. (14) 

 

Homogenize A, B and C term  

into CMFD mesh and  

construct transient matrix 

One MG-CMFD Solve 

  3D 
Yes 

Update NEM transient source 

based on converged CMFD 

flux 

 

Add transient source into  

NEM transverse leakage 

term 

 

Project coarse mesh flux 

into fine mesh and update 

transient source by Eq. (14) 

 

No 
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Figure 3 Geometry for the TWIGL 2G Benchmark Problem (adopted from [8]) 
 

Since TWIGL was originally formulated as a benchmark for diffusion-based codes, 

equivalent transport data have been calculated and are shown in Table I below. All the decay 

neutron data is tabulated in Table I and Table II. 

Table I Material compositions 

Material Group 𝚺𝒂 𝛎𝚺𝒇 𝚺𝒔,𝒈𝒈 𝜿𝚺𝒇 𝝌 

1 1 1.00000E-02 7.00000-03 2.18095E-01 1.12000E-13 1.0 
2 1.50000E-01 2.00000E-01 6.83333E-01 3.20000E-12 0.0 

2 1 1.00000E-02 7.00000E-03 2.18095E-01 1.12000E-13 1.0 
2 1.50000E-01 2.00000E-01 6.83333E-01 3.20000E-12 0.0 

3 1 8.00000E-03 3.00000E-03 2.38410E-01 4.80000E-14 1.0 
2 5.00000E-02 6.00000E-02 6.16667E-01 9.60000E-13 0.0 

4 1 1.00000E-02 7.00000E-03 2.18095E-01 1.12000E-13 1.0 
2 1.46500E-01 2.00000E-01 6.83333E-01 3.20000E-12 0.0 

5 1 1.00000E-02 7.00000E-03 2.18095E-01 1.12000E-13 1.0 
2 1.51750E-01 2.00000E-01 6.83333E-01 3.20000E-12 0.0 

6 1 1.00000E-02 7.00000E-03 2.18095E-01 1.12000E-13 1.0 
2 1.53500E-01 2.00000E-01 6.83333E-01 3.20000E-12 0.0 

 

Table II Composition-independent quantities 

Delayed precursor yield (𝜷) 0.0064 

Delayed precursor decay (𝝀, sec-1) 0.08 

Neutron velocity (cm/s) 1.0E+07, 1.0E+05 

Delayed neutron spectrum (𝝌𝒅) 1.0, 0.0 

Down scatter Cross Section (cm-1) 0.01 

 

Table III Transient perturbations applied to Region 1 

Time (sec) Perturbation 

0.0 -> 0.2  Linear change: material 1 to material 4 
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The TWIGL benchmark was run using a range of fixed time steps and compared to the 

solution obtained by the DeCART code [8], which used the theta method with the addition of 

adaptive time stepping. The MPACT discretization used a ray spacing of 0.03 cm, 16 azimuthal 

and 3 polar angles with a Chebyshev-Yamamoto quadrature.  

As shown in Table IV there is good agreement between the steady-state keff of MPACT and 

DeCART. Figure 4 shows the total core power history throughout the course of the transient, and 

Table V provides a comparison of several power metrics, including peak, asymptotic and integral 

power. For a 2.5 ms time step, the MPACT simulation ran in approximately 24 minutes using 16 

cores with 2.4GHz AMD processors. 

Table IV Initial k-eff for TWIGL 

Codes k-eff 

DeCART 0.91605 
MPACT 0.91601 

 

 

 
Figure 4  TWIGL core power history 

 

As indicated, the codes agree very well during the ramp reactivity insertion from 0.0 to 0.2 

seconds, and all temporal discretizations were capable of accurately calculating the increase in 

power and the peak power.  Minor discrepancies are noticeable immediately following the step 

insertions, where finer time steps are required to resolve the large increase in the magnitude of 

the flux time derivative. The peak and asymptotic powers agree well and are within a percent 

error, with the integral power being the most affected with about a 1% difference from the 

DeCART result for the 10 ms MPACT result. Table VI shows the region-wise averaged 
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normalized pin power. For a time step of 2.5 ms, MPACT agrees well with DeCART result with 

an error of less than 0.02%. 

Table V Power metric comparisons. 

 𝚫𝒕 = 𝟏𝟎 ms 𝚫𝒕 = 𝟓 ms 𝚫𝒕 = 𝟐. 𝟓 ms Ref(DeCART) 

Peak Power 2.198 2.192 2.189 2.183 
Asymptotic Power 1.003 1.003 1.003 1.002 

Integral Power 0.541 0.538 0.536 0.535 

 

Table VI Region wise pin power comparison 

Time(second) Region MPACT DeCART Error 

0.0 

1 1.5699 1.5698 -0.01% 

2 1.9935 1.9934 0.00% 

3 0.4506 0.4507 0.02% 

0.1 

1 1.5937 1.5936 -0.01% 

2 1.9815 1.9815 0.00% 

3 0.4491 0.4491 0.00% 

0.2 

1 1.6183 1.6182 -0.01% 

2 1.9690 1.9689 0.00% 

3 0.4475 0.4476 0.02% 

0.3 

1 1.5363 1.5362 -0.01% 

2 2.0109 2.0108 0.00% 

3 0.4526 0.4527 0.02% 

0.4 

1 1.5255 1.5255 0.00% 

2 2.0165 2.0164 0.00% 

3 0.4533 0.4533 0.00% 

0.5 

1 1.5699 1.5698 -0.01% 

2 1.9935 1.9934 0.00% 

3 0.4506 0.4507 0.02% 

 

3.2 SPERT benchmark result 

One of the most frequently used experiments for transient validation has been the Special 

Power Excursion Reactor Test (SPERT) project which was established as part of the U. S. 

Atomic Energy Commission's reactor safety program in 1954. Among the several SPERT core 

designs, the E-Core consisting of 60 assemblies was used to perform reactivity insertion accident 

(RIA) experiments, and the data measured during those experiments was used here to validate 

the neutronics performance of the MPACT code transient conditions. The core geometry is 

shown in Figure 5 and the SPERT III E-core Reactor Component Design Data from [9] and [10] 

are documented in [11].  A comparison of the steady-state MPACT solution for the Hot Zero 

Power (HZP) and Cold Zero power (CZP) critical core configuration of the SPERT E-Core are 

compared to KENO in Table VII. As indicated both MPACT and KENO are within a few 

hundred pcm of criticality which provides confidence in the MPACT model of the SPERT E-
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Core. The detailed power distribution comparisons of MPACT and KENO for the critical cores 

are provided in [11]. 

 

 

Figure 5 SPERT III E-core cross-section 

 

Table VII Comparison of Eigenvalues for Critical Core Configurations [11] 

 

Case 
 
Temp. (F) 
 

C.R. Pos.(cm) 
 
MPACT 
 

KENO-CE 

CZP 70 36.957 0.99613 1.00028  
HZP 550 71.755 1.00023 1.00356  

 

The SPERT III E-Core control rod ejection tests consisted of a sequence of CZP, HZP, and 

HFP tests with various transient rod insertion depths. For brevity, only the HFP test 86 will be 

used here to demonstrate the preliminary validation of MPACT. Transient test 86 is a hot full 

power transient where the initial core inlet temperature are at 502 oF  4 oF. The system is also 

pressurized such that the initial thermal hydraulic condition is within typical PWR operating 

conditions. In addition, the initial reactor power is approximately 19  1 MW. The withdrawn 

transient rod worth is $1.17  0.05, which is simulated by linearly changing the transient rod 

composition in the withdrawn part of the rod. 

The SPERT cases were run in MPACT using TCP0 scattering with 0.05 ray spacing and the 

Chebyshev-Gauss quadrature set was used with 4 azimuthal and 1 polar angles. The multi-group 

NEM kernel was used to perform the axial solution with 20 axial layers.   The cross sections for 

MPACT were provided from a 56-group AMPX library generated at ORNL by CASL[12].  The 

thermal-hydraulics feedback for the transient solution was provided by an internal thermal-

hydraulics module in MPACT which solves transient mass and energy equations.   Future work 

will include the coupling of the MPACT transient solver to the subchannel thermal-hydrualics 

code COBRA-TF.   

The execution time for Test 86 with 2880 cores on the Titan compute cluster at ORNL was 

approximately 2 hours. The preliminary result of the power calculated by MPACT is shown in 

Figure 6 and as indicated there is reasonable agreement with the measurement data.  However 

there are some noticeable discrepancies, especially at the start of the pulse. This bias is primarily 

due to the simplified transient rod movement mechanism currently used in MPACT, where the 

axial effect of the transient rod worth and transient rod acceleration mechanism are not 
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considered. Also, a coarse quadrature set and a first order time discretization was used in the 

preliminary calculations.  A finer quadrature set with 16 azimuthal angles and 4 polar angles will 

be used for subsequent validation calculations. 

 

 

Figure 6 Test 86 core power history 
 

4 SUMMARY AND CONCLUSIONS  

The objective of this paper was to present the development and preliminary validation of 

the transient capability of the MPACT code.  The transient formulation for the pin-resolved 2D-

1D method was first presented and then two alternative transient CMFD acceleration techniques 

were discussed, a 1-Group (1G) CMFD and Multigroup (MG) CMFD. Results showed that the 

MG CMFD was more effective since it solves the entire CMFD matrix in one iteration and 

dramatically accelerates the transient solution.  The NEM nodal transient method was then 

presented as the 1D axial solver for the 2D-1D method.  Numerical results were then presented 

for the 2D TWIGL and 3D SPERT benchmarks. The TWIGL 2G benchmark result of MPACT 

were shown to agree very well with the DeCART reference solution.  The preliminary results for 

the SPERT III test 86 cases were then provided and the preliminary results of MPACT were in 

reasonable agreement with the experimental data.    

Work is continuing on transient methods development in MPACT.  This will include the 

implementation of improved rod ejection logic in MPACT, a higher order time discretization 

method, an axial SPN transport kernel will be implemented in MPACT, and the transient 

neutronics will be coupled to the transient TH solver in COBRA-TH.   A complete set of SPERT 

experiments will then be performed to validate the MPACT transient capability with the coupled 

codes MPACT/COBRA-TF.   The final goal is to apply MPACT to the analysis of an RIA 

“challenge problem” as part of the CASL core simulator VERA-CS. 
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