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Abstract

This report documents the progress made in the implementation and testing of on-the-fly
Doppler broadening for Monte Carlo simulations. The content is a summary of work reported
in three recently published articles (PHYSOR 2014 special issue, Journal of Computational
Physics - CASL special issue and M&C 2015).

1. Introduction

The windowed multipole (WMP) method is a new technique to perform Doppler broad-
ening of resolved resonance cross section data in a highly efficient manner, based on the
multipole formalism. Reich-Moore and Multi-Level Breit Wigner resolved resonance data
can be converted into the multipole formalism via a process of partial fraction expansions
[1, 2]. The resulting pole and residue form can be analytically Doppler broadened. The
primary drawback of the original multiple formalism is the computational cost, since each
evaluation requires a Faddeeva function (a scaled complex complimentary error function)
evaluation for each pole. This is a time consuming process if there are many poles. A brief
overview of the mathematics is described in Section 2.

A simplification was found in that, for each energy point, only some poles contribute
appreciably to the solution. Fewer still fluctuate significantly. So, instead of evaluating
each pole exactly, some can be replaced with a polynomial [3]. This simplification, called
the windowed multipole formalism, improves computational performance by a significant
margin at the slight cost of accuracy [4]. Further, this format uses very little memory
relative to pointwise data. This technique is explained in detail in Section 3. Since the
multipole formalism is limited to the resolved resonance range, work was also performed in
analyzing on-the-fly methodologies to the unresolved resonance range.

This report presents a brief review of the multipole formalism and windowed multipole
method in section 2 and 3. Section 4 indicates the impact of target library accuracy on
aseries of test cases. Section 5 presents the performance of the windowed multipole method
on reaslitic LWR problems, while section 6 introduces the most recent work performed on
the unresolved resonance region.

2. Multipole formalism

The multipole formalism is a mathematically exact alternate representation of Reich-
Moore and Multi-Level Breit Wigner data [1, 2]. In this form, the cross sections are repre-
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sented by sums of poles and residues. For example, the general form of the 0K cross section
for reaction x is shown in Equation (1). In this equation, pj are the poles, and rj,x are the
residues corresponding to reaction x. For each set of quantum numbers there corresponds a
set of resonance levels. Each one of these resonance levels can be decomposed into a sum of
poles and residues. The subindex j represents this decomposition, and spans all quantum
numbers, all levels, and all poles necessary to represent the entirety of the cross section data.

σx(E) =
1

E

∑
j

<

[
rj,x

pj −
√
E

]
(1)

The key advantage to the multipole formalism is when the previous equation is Doppler
broadened. This integration is performed analytically and results in the following:

σx(E, T ) =
1

2E
√
ξ

∑
j

<
[
irj,x
√
πW (z0)− rj,x√

π
C

(
pj√
ξ
,
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2
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2
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ξ
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= 2pj

∫ ∞
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du′
exp

[
− (u+u′)2

4ξ

]
p2
j − u′2

There are two important functions in the previous equation. The first, W , is the Faddeeva
function. There are several algorithms that can evaluate this function quickly using various
approximations [5, 6]. The second one, C, has been found to be negligible except at very
low energy [1, 7].

Unfortunately, performing Faddeeva function evaluations for all poles is not efficient.
Some isotopes have very large numbers of poles. Each resonance contributes 2(l + 1) poles,
where l is the neutron orbital angular momentum. In the case of 238 U in the ENDF-B/VII.1
library [8], this results in 11520 poles. To make this technique sufficiently fast to be useful,
approximations must be made which led to the windowed multipole formalism.

3. Windowed multipole

One key feature of a singular pole and residue is that the region of high fluctuation, and
thus the region most difficult to approximate, is constricted to a narrow band near

√
E ≈ pj

[7]. By evaluating some poles exactly and approximating the rest as a curve fit, the number
of poles that must be summed substantially decreases.
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To efficiently determine which poles are important at run time, the entire energy range
is chopped up into windows. In prior studies, it was found that having the windows equally
sized in momentum proved superior to equally spaced in lethargy or energy [4]. During
preprocessing, an optimization routine is run on each window to identify the index of the
first and last poles required to maintain a specific accuracy criterion, forming the outer
window. These indices are stored inside of the library for use at runtime. The remaining
components of the library (poles and pointwise data) are curve fit with a polynomial. These
polynomials are relatively smooth, since they do not contain the fluctuating portions of
resonances. This makes them mostly temperature insensitive except in the thermal region.
The general process is depicted in Figure 1. These indices and curve fits are valid for the
entire domain of the inner window.

The curve fit used took the form of Equation (3). This curve fit was chosen as this series
contains the 1/E term from Equation (1), the 1/v term common to absorption cross sections
at low energies, and a constant term.

σcf (E) =
N∑
i=0

CiE
i/2−1 (3)

4. Impact of library accuracy

The general goal was to analyze how sensitive the integral accuracy and the performance
of the windowed multipole formalism was to the target accuracy of the optimization proce-
dure. First, several libraries were generated. Their properties are described in Section 4.1.
Then, the libraries were compared to the ENDF-B/VII.1 data sourced from the MCNP6
distribution. The resonance integrals were compared as a function of initial library accuracy
and temperature. This is described in Section 4.2. The relative performance of the libraries
are studied in Section 4.3 and the memory requirements are quantified in Section 4.4.

4.1. Library

In order to test how the target accuracy actually affected results, four libraries of varying
target accuracy were generated from the ENDF-B/VII.1 data. The two isotopes processed
were 235 U and 238 U. The accuracy settings used were 0.01%, 0.1%, 1%, and 10% maximum
allowed relative error over the temperature range from 300K to 3000K. A parametric search
over curve fit order and inner window average size was performed, and the library which
took the shortest average time to evaluate a cross section was used. These are listed in
Table 1.

An interesting thing to note is that the optimization process selected the same inner
window size for each target accuracy and, except for the 0.01% case, the same curve fit
order. This indicates that the major difference between the four libraries is the number of
resonances to be treated explicitly.
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Figure 1: Library Generation Mechanism for Windowed Multipole

4

CASL-U-2015-0160-000 



Table 1: Library window and curve fit order

Isotope Max Relative Error Inner Window (eV) Curve Fit Order

235 U

0.01 % 1 6
0.1 % 1 2
1 % 1 2
10 % 1 2

238 U

0.01 % 10 3
0.1 % 10 2
1 % 10 2
10 % 10 2

4.2. Resonance integral comparison

For each isotope, the resonance integral of the total cross section was calculated. Specif-
ically, the calculation performed is shown in Equation (4). In the case of 235 U, the limits of
the integration were 0.1 eV to 2250 eV. For 238 U, the limits were 0.1 eV to 20 keV. For the
MCNP6-sourced data, integration was performed exactly for each line segment. The win-
dowed multipole data was evaluated at each energy point from the MCNP6-sourced data
and integrated identically to provide a suitable comparison. The same process was run for
all of the temperatures available, 0.1K, 250K, 293.6K, 600K, 900K, 1200K, and 2500K.

RIt =

∫ E2

E1

σt(E)

E
dE (4)

4.2.1. Resonance integral results for 235 U

As shown in Figure 2, all the windowed multipole libraries become increasingly inaccu-
rate with increasing temperature. However, the inaccuracies are still small considering the
actual target accuracy. The 10% library yields a maximum error below 0.5%, which was
expected since the windowed multipole treats the local resonances exactly. The maximum
errors in the library always occur at low cross section values, and the impact on resonance
integral increases slightly with temperature as neglected resonances start contributing to
the background term. In the case of the 0.01% library, the error at 2500K on resonance
integrals is -0.003%. The value is -0.011% for the 0.1% library. The reduction in resonance
integral going from the MCNP6-sourced data to the windowed multipole library was found
to be consistent for all temperatures, all reactions (σt, σs, σa, σf , and σc), and all library
configurations tested.

4.2.2. Resonance integral results for 238 U

The exact same process was repeated for 238 U, yielding Figure 3. Most notably, the
errors do not begin at 0% as is the case for 235 U, but at -0.004%. This likely indicates
a slight discrepancy between NJOY and our processing code. The 238 U library is far less
sensitive to the target accuracy, with the 10% library being 50 times more accurate than
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Figure 2: Multipole Library Resonance Integral Compared to MCNP6-sourced Data, 235 U
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Figure 3: Multipole Library Resonance Integral Compared to MCNP6-sourced Data, 238 U

the equivalent 235 U library. Similar to the 235 U results, the trend is negative and this holds
for all reactions, temperatures, and libraries.

4.3. Performance

These libraries were loaded into a simple hydrogen scattering slowing down benchmark.
Neutrons are started at the end of the resolved resonance range and terminated once they
reach 0.1 eV. The time to compute a full set of cross sections at each collision is calculated,
and presented in Figure 4 for 235 U and in Figure 5 for 238 U. All runs were done on an Intelr

i7-970 @ 3.20GHz.

4.4. Memory Requirements

One advantage of the windowed multipole method is the reduction in memory require-
ments as compared to pointwise. There are two reasons for this. The first is that the entire
resolved energy range (several hundreds of thousands of points for some isotopes) has been
replaced with a few thousand complex numbers and curve fits. The second is that since
the resolved energy range has been eliminated, the other cross sections (inelastic, etc.) do
not need to be unionized to those points. The memory requirements for each isotope was
calculated. For this calculation, the memory listed is the sum of the sizes of all arrays for the

7

CASL-U-2015-0160-000 



0 500 1000 1500 2000 2500
Temperature, K

0

1

2

3

4

5

6

7

8

9

Ti
m

e,
µ

s

235U Evaluation Time

Library
10%
1%
0.1%
0.01%
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Table 2: Memory Requirements for Windowed Multipole

Library 235 U Mem. kB 238 U Mem. kB
10% 543 542
1% 543 542
0.1% 543 542
0.01% 841 589

Table 3: Memory Requirements for the MCNP6-sourced Data

Temperature 235 U Mem. kB 238 U Mem. kB
0.1 K 12993 21014
250 K 4478 9014
293.6 K 4240 8693
600 K 3370 7391
900 K 3005 6769
1200 K 2795 6374
2500 K 2429 5514

resolved resonance data and for all secondary distributions. This does not include angular
distributions and other components shared by both libraries. The memory requirements for
the windowed multipole library are shown in Table 2.

The memory requirements for a single-temperature pointwise dataset from the MCNP6-
sourced libraries varied with temperature. The memory requirements are shown in Table 3.

Overall, the windowed multipole library footprint was mostly insensitive to the target
accuracy except when the curve fit polynomial order increased in the 0.01% case. Further,
a windowed multipole library, which is valid for all temperatures from 300K to 3000K took
significantly less memory than any single-temperature ACE library.

5. Windowed multipole on LWR problems

In this section a more complete windowed multipole library is generated and tested using
the BEAVRS benchmark. A single assembly case and a full core 3D case were simulated.

5.1. Library

A windowed multipole library was generated for most of the isotopes of the BEAVRS
fresh core benchmark which utilizes a total of 89 isotopes. In the ENDF/B-VII.1 library that
was used in this paper, certain isotopes are only given in a point-wise form thus making it
impossible to extract the resonance parameters needed for the multipole formalism. This was
historically done for lighter isotopes where very few points were needed to represent the cross
sections or for isotopes requiring resonance models not yet supported. Newer evaluations
will have less and less of these point-wise only isotopes but a few of the lighter isotopes
will surely remain. Additionally, a few evaluations contain unphysical discontinuities or
oscillations (e.g. point-wise resonances) in file 3 causing issues with the windowed multipole
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Table 4: Isotopes not in windowed multipole format.

Isotope Reason
H-1 Point-wise
H-2 Point-wise
He-3 Point-wise
He-4 Point-wise
B-10 Point-wise
B-11 Point-wise
Carbon (natural) Point-wise
N-14 Point-wise
N-15 Point-wise
P-31 Point-wise
S-36 Point-wise
Ar-36 File 3
Ar-38 File 3
Ar-40 File 3
Ca-46 Point-wise
V-50 Incomplete at time of run
V-51 Incomplete at time of run
Nb-93 File 3

Table 5: Library Configuration

Parameter Value
Max Relative Error 0.1 %
Threshold Error 10−5b

optimization. These issues are more common with older evaluations where newer resonance
formats that properly account for interference effects were not available. The cause of failure
for the two Vanadium isotopes has not yet been determined. Table 4 contains the list of
all isotopes excluded from the windowed multipole library. For the results presented in the
next section these isotopes were kept in the point-wise format at the closest pre-processed
temperature. It should be noted that with a few exceptions (ie. H-1, B-10, B-11) all
isotopes on this list are only present as trace elements in the material compositions of the
benchmark. Additionally, the few isotopes on this list present in significant quantity have
minimal temperature feedback due to the smoothness of their cross section.

In total, 71 isotopes were processed using the windowed multipole method in the resolved
resonance range. Temperature dependent probability table data of the unresolved range
and temperature independent data for the fast range was taken from the ENDF library.
The library was optimized first and foremost for efficiency using the configuration found in
Table 5.

The threshold error is the minimum absolute cross section value for which errors were
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Table 6: Assembly Accuracy Run Configuration

Parameter Value
Inactive Batches 200
Active Batches 1000
Neutrons Per Batch 4 million

Table 7: Assembly Results

Data Eigenvalue N/s Inactive N/s Active
ACE 1.21204± 0.00001 24138 14841
WMP 1.21207± 0.00001 21063 9337

checked. There are a few exceptions where the threshold error for the capture cross section
was increased slightly in a given window due to sharp unphysical discontinuities in the data
for Fe and Cu.

5.2. Results

Two tests were run to analyze the accuracy and efficiency of the windowed multipole
method. The runs were focused on investigating the accuracy of windowed multipole using
a single assembly case and the full 3D core. The total fission rate and 238 U absorption
rate were tallied for both an ACE library and the windowed multipole library described in
the previous section. Both runs use the MIT Faddeeva function to evaluate the Faddeva
function [5]. The details of this analysis are presented in Section 5.3.

5.3. Accuracy

The first test case consists of a high enrichment assembly from the BEAVRS benchmark
and the second is the full 3D core benchmark. Both of these runs were performed with the
ENDF71X ACE library distributed with the current MCNP release [9], and the aforemen-
tioned multipole library. Both runs were done at 600K, the nearest temperature of the ACE
library to the hot zero power conditions. The total neutron production rate, νΣfφ, and the
238 U capture rate, Σa,U−238φ were tallied and compared, both in an energy integrated sense
and in a volumetrically integrated sense.

5.3.1. 3D Single Assembly

The single assembly is a 3.2% enriched assembly with no burnable absorber with reflective
boundary conditions. The run parameters are listed in Table 6 and the resulting eigenvalues
in Table 7.

The results in Table 7 show great agreement between the two libraries by being within
3 standard deviations of each other with very tight statistical convergence. Despite being
based on the same evaluation, the processing and temperature broadening introduces slight
differences which can explain the observed discrepancies. In addition to eigenvalue, Figure 8
and Figure 9 present the volume integrated capture and fission rates in the assembly.
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Figure 6: 238 U Absorption Rate, Assembly, Volume Integrated

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 107 108

Energy, eV

0.04

0.03

0.02

0.01

0.00

0.01

0.02

R
e
la

ti
v
e
 D

if
fe

re
n
ce

, 
A

ss
e
m

b
ly

 W
id

e
, 
%

Fission Production Rate, Assembly, WMP compared to ACE

Figure 7: Fission Neutron Production Rate, Assembly, Volume Integrated

Both reaction rates, with corresponding 1 sigma statistics, ever exceed the ±0.1% accu-
racy limit used when generating both libraries. Notably, the fission production rate is always
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within ±0.04%, with the most inaccurate bin being the one between 0.625 eV and 1 eV.
This provides great confidence in the accuracy of the generated library and the optimization
algorithm used.

Additionally, spatial distribution of reaction rates were also analyzed by comparing en-
ergy integrated tallies over a pin size mesh. These results are shown in Figure 6 and Figure 7.
All pins reaction rates are within 0.12% ± 0.05 between the two libraries. The distribution
is quite random indicating no clear bias once again supporting the accuracy of the multi-
pole library. It should also be noted that the standard deviation provided are from single
runs and thus do not properly capture the correlation effects that exist between consecutive
fission banks [10].
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Figure 8: 238 U Absorption Rate, Assembly, Energy Integrated
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Table 8: BEAVRS Accuracy Run Configuration

Parameter Value
Inactive Batches 1000
Active Batches 200
Neutrons Per Batch 4 million

Table 9: BEAVRS Results

Data Eigenvalue N/s Inactive N/s Active
ACE 0.99733± 0.00003 23191 15488
WMP 0.99735± 0.00003 20248 14753

5.3.2. 3D Full Core BEAVRS Benchmark

In addition to the single assembly case, the full core BEAVRS benchmark was also
analyzed with the run configurations detailed in Table 8. The resulting eigenvalues for each
library are compared in Table 9. The eigenvalues themselves are within statistics of each
other, showing excellent agreement.

Comparing the volume integrated results in Figure 10 and Figure 11, no tally, along
with its accompanying standard deviation, ever exceeded difference above ±0.1%. With the
libraries themselves not expected to be any more accurate than 0.1 %, these discrepancies
are to be expected.
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Figure 10: 238 U Capture Rate, BEAVRS, Volume Integrated
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Figure 11: Fission Neutron Production Rate, BEAVRS, Volume Integrated

However, when comparing energy integrated results in Figure 12 and Figure 13, an is-
sue arises. Assembly by assembly comparisons show relative differences exceeding 2 %,
well beyond the provided single run standard deviations which assumes the independence
of consecutive fission sources. The previous section indicated with great confidence that
the multipole library could produce sufficiently accurate reaction rate results both spatially
and in energy at the assembly level. These results highlight a major complication of Monte
Carlo methods for full core simulations. Currently used metrics for source convergence, as
illustrated in Figure 14, indicate that the fission site distribution should have long converged
after 1000 cycles, but correlation effects persist. In high dominance ratio cores the impor-
tance of these correlation effects are felt considerably. Small library differences can create
important spatial distribution effects regardless of the method used in processing the eval-
uations. Alternative iteration schemes, full independent simulations, and/or a much large
number of neutrons per cycle would be required to attenuate these effects to an acceptable
level. Analysis of possible solution pathways is beyond the scope of this paper, and will be
the focus of future studies.

6. Unresolved Resonance Region

In the URR, individual resonances cannot all be resolved experimentally even though,
in reality, single resonances exhibit distinct structure, just as in the resolved resonance
region. As a result, precise cross section values are unknown in the URR. Instead of precise
descriptions of URR resonances and cross sections, we must rely on average descriptions and
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Figure 12: 238 U Capture Rate, BEAVRS, Energy Integrated
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Figure 13: Fission Neutron Production Rate, BEAVRS, Energy Integrated

statistical distributions [11].

6.1. Averaged, Infinite-dilute Cross Sections

Though precise cross section values at any given incident neutron energy, En, in the URR
are unknown, based on mean unresolved resonance parameter values and the statistical
distributions of those values, we can construct the probability distribution, P (σ′r|En), of
cross section values for reaction r. Then we can write an expression for the expected cross
section value as a Lebesgue integral in σ′r-space,

〈σr(En)〉 =

∫ ∞
−∞

dσ′rP (σ′r|En)σ′r. (5)

This averaged, expected value is what is commonly referred to as an infinite-dilute cross
section. Historically, in the absence of precisely known URR resonance structure, these
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expected cross sections were used in Monte Carlo neutron transport simulations.
Use of the infinite-dilute cross sections, though, is tantamount to neglecting energy self-

shielding effects. By obtaining expected cross section values in the manner just described,
we have smoothed out the resonance structure of the URR. That is, in the narrow energy
intervals where resonances actually occur, we have a reduced value, and in the wider energy
intervals between real URR resonances, we have an increased value. So, over the majority of
URR energies, infinite-dilute cross sections are greater than the unknown, precise values. It
is known that this phenomenon leads to significant over-predictions of reaction rates, notably
capture by resonant absorbers (e.g. 238U) in intermediate energy spectrum systems when
infinite-dilute cross sections are used in simulations. This can result in under-predicted,
non-conservative keff eigenvalue calculations [12].

6.2. Probability Tables

In order to more faithfully account for resonance structure and the resulting self-shielding
effects in the URR — phenomena that can be worth hundreds of pcm in intermediate spec-
trum systems — the probability table method was proposed [13]. This method relies on
the sampling of discrete cross section values with associated discrete probabilities such that,
in the limit of many samples, the expected cross section value at a given En is preserved.
Although expected cross sections are preserved, the distribution of discrete cross section-
probability pairs provides a more realistic model for URR self-shielding effects. Probability
tables are generated in a pre-processing step before the start of a neutron transport sim-
ulation. In general, a different set of tables is required at every temperature, for each
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nuclide with a URR, in a simulation. Certain practical considerations in implementing the
probability table method are well-documented [14, 15, 16].

6.3. Competitive Reaction Cross Section Resonance Structure

Though there may be multiple competing reactions at URR energies, the ENDF-6 for-
mat [17] allows the specification of File 2 unresolved resonance parameters for only elastic
scattering, radiative capture, fission, and a single competitive reaction, typically inelastic
scattering to the first excited level of the compound nucleus, if energetically possible. Any
resonance structure in another reaction must be entirely described via pointwise energy-cross
section pairs in File 31.

Further, despite allowing for the specification of URR resonance parameters for a com-
petitive reaction, the ENDF-6 format prescribes the use of only the File 3 averaged cross
section values. The possibility of different treatments of the competitive reaction cross sec-
tion inducing biases in simulation results is mentioned by MacFarlane, et. al [18]. In their
code-to-code comparison study of Big Ten critical assembly simulations, it is noted that
the TRIPOLI code [19], in making use of URR cross section data generated with the CAL-
ENDF nuclear data processing code [20], accounts for resonance structure in the competitive
reaction cross section. Many other transport codes, such as MCNP [21], utilize the infinite-
dilute URR cross section values that are produced by the NJOY Nuclear Data Processing
System [22]. Here, in OpenMC [23], we have isolated competitive reaction cross section
resonance structure effects by allowing for the on-the-fly use of either averaged or structured
values.

6.4. On-the-fly Cross Section Calculations

In this section we describe the on-the-fly method of generating URR cross sections.
The method is implemented in the OpenMC neutron transport code [23]. The sampling
of unresolved resonance parameters and use of the sampled parameters in cross section
computations using the single-level Breit-Wigner formulae are discussed in Secs. 6.5 and 6.6,
respectively.

6.5. Level Spacings and Partial Widths

In the energy region about any incident neutron laboratory system energy, En, at which
we wish to compute a realization of URR cross section values, we must statistically generate
an ensemble of resonances. This ensemble, sometimes referred to as a resonance ladder in the
context of probability table generation, is determined by the energies at which resonances
occur as well as the partial reaction widths characterizing each of the resonances. The process
for sampling these values proceeds directly from the unresolved resonance parameters given
in File 2 of an ENDF-6 format [17] evaluated nuclear data file.

We are first concerned with the mean unresolved resonance parameter values given for an
individual spin sequence which is defined by an orbital angular momentum quantum number,

1Any structure that is represented in the File 3 background cross section is typically quite crude because
it is only the gross structure over multiple URR resonances, not the structure of individual resonances.
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l, and a total angular momentum quantum number, J . There are Nl orbital quantum
numbers associated with the URR for a given nuclide. For each of these Nl values, there
are NJ(l) total angular momentum quantum numbers. That is, Nl is a nuclide-dependent
quantity and NJ(l) is dependent on both the nuclide and the l values for that nuclide.

For each (l, J) spin sequence, we sample level spacings (i.e. energy differences between
adjacent resonance energies) and partial reaction widths using those parameters’ mean val-
ues and their statistical distributions. The mean parameter values at a specific En are
determined by interpolation2 between the values at the energies tabulated in the ENDF-6
File 2. The spread of level spacings and partial reaction widths are described by the Wigner
distribution and χ2 distributions with varying degrees of freedom, respectively. The Wigner
distribution for level spacings is given by

PW

(
Dl,J(En)

〈Dl,J(En)〉

)
=

πDl,J(En)

2〈Dl,J(En)〉
exp

(
− πDl,J(En)2

4〈Dl,J(En)〉2

)
. (6)

Direct sampling of this distribution gives

Dl,J(En) = 〈Dl,J(En)〉
√
−4 log (ξ)/π, (7)

for a random number on the unit interval, ξ. Partial widths for reaction r, Γr, are obtained
by sampling a χ2 distribution,

Pχ2(µr)(y) =
exp

(
−y

2

)
y
µr
2
−1

2µr/2G
(
µr
2

) ; y ≡ µr
Γl,Jr

〈Γl,Jr (En)〉
(8)

with a reaction channel-dependent number of degrees of freedom, µr(l, J). The G
(
µr
2

)
term

in Eq. (8) is the Gamma function.
With a sample y and the mean parameter values and degrees of freedom provided in

an ENDF-6 file, it is straightforward to obtain sample partial widths for radiative capture,
Γl,Jγ ; fission, Γl,Jf ; and the single competitive reaction, Γl,Jx . The energy-dependent sampled
neutron width is then calculated as

Γl,Jn (En) = νl(En)
√
En〈Γl,Jn,0〉µn

Γl,Jn,0

〈Γl,Jn,0〉
(9)

using a mean reduced neutron width value, 〈Γl,Jn,0〉. The derived variables νl and ρ are given
by Pl/ρ and ack(En), respectively. In these expressions, ac, k, and Pl are the channel radius,
center-of-mass neutron wavenumber, and orbital quantum number-dependent penetration
factor, respectively. The procedures for computing the channel radius and a related quantity,
the scattering radius, as, are detailed in the ENDF-6 Formats Manual [17]. The wavenumber
is given by

k(E) =
10
√

2mn

~c
A

A+ 1

√
|E| (10)

withmn, ~c, and A being the mass of a neutron in eV, the reduced Planck constant multiplied
by the speed of light in eV-fm, and the ratio of the mass of the target nuclide to that of a
neutron, respectively.

2The nuclide-dependent interpolation scheme is prescribed in the ENDF-6 file.
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Figure 15: 238U Elastic Scattering Cross Section Realization About En = 25 keV for Nλ = 64

6.6. Single-level Breit-Wigner Cross Sections

From the sampled level spacings and partial reaction widths, cross section values at
a given En are computed using a so-called many-level Breit-Wigner model3 [24]. In this
model, a cross section at En is computed as a summation of the contributions from each
of Nλ single-level Breit-Wigner (SLBW) resonances [25] to the value at this energy. The
value of Nλ must be chosen, for each spin sequence, to be high enough that the addition of a
nominal resonance’s contribution to the cross section values at En is negligible. Initial studies
suggest that an Nλ value of 64 will produce satisfactory differential and integral results for
the range of systems investigated here. This determination is based on the observations
that the resulting partial reaction cross section values are unbiased at the 0.1% relative
difference level when compared to values computed using a higher Nλ value and that the
keff values that are computed in simulations using cross section realizations generated with
64 contributing resonances from each spin sequence are unbiased relative to the results that
are obtained with additional resonances. To illustrate, the schematic in Fig. 15 shows a
realization of the 238U elastic scattering cross section localized about En = 25 keV along
with the full realization. It is apparent that the truncated, local realization is sufficient to
capture resonance cross section structure in the vicinity of the desired energy. Each time
that a cross section value is needed within a simulation, the on-the-fly calculation method
requires a new generation of an independent realization localized about En.

The SLBW elastic neutron scattering cross section is given by

σn(En) = σpot(En)

+

Nl−1∑
l=0

NJ (l)∑
j=1

Nλ∑
λ=1

σλ

([
cos (2φl(En))−

(
1− Γn,λ

Γλ

)]
ψ(θ, x) + χ(θ, x) sin (2φl(En)

)
.

(11)

The potential, or shape elastic, scattering cross section appears in the above expression and

3This many-level Breit-Wigner model should not be confused with the multi-level Breit-Wigner (MLBW)
resonance formalism.
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is calculated as

σpot(En) =
4π

k2(En)

Nl−1∑
l=0

(2l + 1) sin2 (φl(En)). (12)

It is well-known that, due to its neglect of level-level interference effects, the SLBW represen-
tation can result in unphysical negative elastic scattering cross sections. When a negative
value is encountered, the elastic scattering cross section is simply set to zero in our im-
plementation. This adjustment is propagated through to the total cross section which is
calculated as the sum of partial reaction values.

Radiative capture, fission, and the competitive reaction cross sections are given by

σγ(En) =

Nl−1∑
l=0

NJ (l)∑
j=1

Nλ∑
λ=1

σλ
Γγ,λ
Γλ

ψ(θ, x), (13)

σf (En) =

Nl−1∑
l=0

NJ (l)∑
j=1

Nλ∑
λ=1

σλ
Γf,λ
Γλ

ψ(θ, x), (14)

and

σx(En) =

Nl−1∑
l=0

NJ (l)∑
j=1

Nλ∑
λ=1

σλ
Γx,λ
Γλ

ψ(θ, x), (15)

respectively. The total cross section is calculated as the sum of the Nr partials,

σtot(En) =
Nr∑
i=1

σr,i(En). (16)

Other formulae and variables needed for the computation of cross sections include those for
the neutron resonance energy, Eλ; the resonance peak value,

σλ = gJ
4π

k2(Eλ)

Γn
Γλ

; (17)

the statistical spin factor,

gJ =
2J + 1

4I + 2
; (18)

the neutron width evaluated at the resonance energy,

Γn,λ(|Eλ|) =
Γn,λ(En)Pl(|Eλ|)

Pl(En)
; (19)

θ =
Γλ

2
√
kBTEn/A

, (20)

with T being the temperature of the material in which the target nuclide resides;

x =
2(En − E ′λ)

Γλ
; (21)
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and the shifted resonance energy,

E ′λ = Eλ + Γn,λ
Sl(|Eλ|)− Sl(En)

2Pl(|Eλ|)
. (22)

Expressions for the penetrabilities, Pl; hard-sphere phase shifts, φl; and resonance energy
shift factors, Sl, are given in the ENDF-6 Formats Manual [17].

Continuous-energy Doppler broadening, as opposed to the pointwise kernel broadening
of the SIGMA1 method [26], is accomplished using the ψ−χ Doppler integral functions [27].
These functions are given by

ψ(θ, x) =
θ
√
π

2
Re

[
W

(
θx

2
,
θ

2

)]
and χ(θ, x) =

θ
√
π

2
Im

[
W

(
θx

2
,
θ

2

)]
, (23)

respectively. The W -function, also known as the Faddeeva function, is defined as

W (α, β) = exp
(
−z2

)
(−iz) =

i

π

∫ ∞
−∞

dt
exp (−t2)

z − t
(24)

with α and β being the real and imaginary components, respectively, of complex number z =
α+ iβ. With the presented procedures for sampling resonance parameters and subsequently
calculating temperature-dependent cross section values, the relationship that exists between
cross section values at different temperatures, for a given nuclide and fixed energy, can
be preserved with relative ease. When a neutron streams into a region that contains a
nuclide which was also contained in another region previously traversed by the same neutron,
without any interactions in between, the cross section values in the two different regions must
be related, regardless of temperature. A new set of resonances should not be generated
when the neutron passes into the latter region. The same resonances should be used to
compute cross sections in both regions, with any differences due to Doppler broadening
only. With the on-the-fly method, this is accomplished by simply storing the set of sampled
resonance parameters, generated near the current energy, between interactions and use it to
compute cross sections at any required temperature. Similar functionality is possible with
the probability table method[16].

As another practical point of implementation, URR cross section values, once computed,
can be utilized in one of two ways. In the first case, cross section values computed from
File 2 unresolved resonance parameters using the above equations are simply to be added
to any background File 3 cross sections. In the second, the computed cross section values
are divided by pre-computed, averaged, infinite-dilute values. The resulting factor is then
multiplied by the cross section value given in File 3 to obtain the cross section value that is
to be used in the transport simulation. For a given nuclide, the evaluated nuclear data file
prescribes which of these treatments to use.

6.7. Results and Analysis

In this section we present results obtained from OpenMC simulations of an infinite, ho-
mogeneous medium test problem. We examine the keff eigenvalues and normalized neutron
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Table 10: Comparison of keff for Various URR Treatments at 293.6 K

URR Method Inelastic Cross Section keff 1σ
Averaged Averaged 1.00001 0.00008

Probability tables Averaged 1.00390 0.00009
On-the-fly Averaged 1.00403 0.00008
On-the-fly Structured 1.00493 0.00008

Table 11: Comparison of keff for Various URR Treatments at 2500 K

URR Method Inelastic Cross Section keff 1σ
Averaged Averaged 0.99935 0.00008

Probability tables Averaged 1.00071 0.00008
On-the-fly Averaged 1.00065 0.00008
On-the-fly Structured 1.00099 0.00008

flux energy spectra that result from various URR cross section treatments. Particular atten-
tion is given to the comparison of results obtained from simulations using probability tables
and on-the-fly cross sections. The effects of the treatment of the structure of the 238U first
level inelastic scattering cross section on simulation results are also explicitly investigated.
The infinite, homogeneous system is simulated at different temperatures to further validate
the on-the-fly URR cross section Doppler broadening methodology.

All simulations are performed using the ENDF71x neutron data library [28]. Where
needed, probability tables are also drawn from ENDF71x. This library contains ENDF/B-
VII.1 nuclear data [29] processed into ACE format with the NJOY Nuclear Data Processing
System, version 99.393 [22]. Resonance parameters and other variables required for on-the-
fly cross section calculations are taken from the raw ENDF/B-VII.1 evaluations.

We start our investigation of URR cross section treatments with a simple infinite, ho-
mogeneous medium system composed of a 10:1 ratio of 238U and 235U nuclei that is brought
to critical with the addition of 10B. The test problem is constructed to have an intermedi-
ate/fast neutron energy spectrum so that it is sensitive to the handling of the URR. The
simplicity of the model and its relatively hard energy spectrum make it an effective system
to use in the testing of the on-the-fly URR cross section calculation method. The system
is simulated at both 293.6 K and 2500 K to demonstrate the consistency between cross sec-
tions broadened directly via Doppler integrals and probability table data pre-computed at a
given temperature. In this problem, only 238U and 235U have a URR that must be handled.
When required, on-the-fly cross sections are computed only for 238U with structured 235U
cross sections being taken from probability tables.

In Tables I and II the keff eigenvalue results are shown for various URR treatments at
293.6 K and 2500 K, respectively. At each temperature we can see the sensitivity of the
model to the representation of cross section resonance structure. Going from the averaged
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cross sections to those which account for resonance structure with probability tables can
result in a keff increase of hundreds of pcm. This behavior is brought on by a decrease in
238U resonance absorption.

With respect to the accuracy of the on-the-fly method, we see agreement to well within 2σ
between keff values computed with probability table cross sections and those computed with
on-the-fly cross sections. This agreement is desired because the probability table method is
essentially a discretized version of the on-the-fly method which is continuous with respect
to energy, temperature, and cross section probabilities. Then, comparing the two cases in
which cross sections are computed on-the-fly, there is an additional non-negligible bump
in reactivity that comes when the resonance structure of the first level inelastic scattering
reaction cross section is accounted for. This increase amounts to approximately 90 pcm and
30 pcm at 293.6 K and 2500 K, respectively.

Comparisons of flux spectra illustrate the excellent agreement between on-the-fly and
probability table results and also the impact of accounting for the resonance structure of
the 238U competitive inelastic scattering cross section. Figures 16a and 17a show that —
at 293.6 K and 2500 K, respectively — at energies with an appreciable flux, the differential
tallies calculated with on-the-fly and probability table cross sections differ by less than one
percent. Then, in Figs. 16b and 17b, again for 293.6 K and 2500 K, respectively, we can
see the noticeable bias that results when using an averaged, rather than structured, inelas-
tic scattering cross section representation. When using averaged cross sections, inelastic
scattering rates in the URR are over-predicted. It follows that flux tallies in the URR and
at energies below it are relatively decreased and increased, respectively, compared to the
structured cross section case. At energies below the URR, a structured cross section treat-
ment results in flux tally values that are reduced by approximately 5-10% from the values
computed with averaged cross sections.

7. Conclusion

This report presents the recent progress of the on-the-fly Doppler broadening methods
for both the resolved and unresolved resonance regions. Section 4 describes a parametric
study of the library accuracy and its impact of resonance integral on given nuclides. As
expected, good accuracy can be obtained with target accuracies larger than currently used
for pointwise data. The windowed multipole method utilizes resonance parameters exactly,
thus the only approximation comes from the fitting of the background term where larger
errors only occur at low cross-section value. Future work will study the impact of target
accuracy in the windowed multipole process on realistic reactor models such that a reasonable
tradeoff can be obtained between accuracy and performance. This work was submitted and
accepted for publication as part of the PHYSOR 2014 special issue.

In section 5, analysis was performed on the BEAVRS benchmark for both an assembly
and full 3D core model using a library with 71 total isotopes. Comparisons were made with
the MCNP ENDF7 library at the same temperature. The accuracy and performance was
comparable on the assembly, but the core analysis revealed the sensitivity of core analysis to
clustering. Libraries of equivalent accuracies at the pointwise level and assembly level can
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still present large differences at the full core level due to the correlation effects present in the
system. This study also indicates that windowed multipole is as performing as the single
temperature ACE file, and shuld thus perform better than any temperature interpolation
scheme that would require at a minimum 2 table lookups per cross section lookup. Future
work will compare the performance of windowed multipole with other on-the-fly Doppler
broadening methods, and will also analyze in more details the correlation effects present at
the core level. This work was submitted to JCP as part of the CASL special issue.

Since the windowed multipole method is limited to the resolved resonance range, an
extension has been developed for the unresolved range where SLBW resonances are being
sampled on-the-fly from the known distributions to mimic the probability table process.
Future work will look at extending the unresolved resonance range and quantifying the
impact of competitive reaction cross section resonance structure. This work will be presented
at M&C 2015.
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Figure 16: Flux Spectra at 293.6 K
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Figure 17: Flux Spectra at 2500 K
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