
Consortium for Advanced
Simulation of LWRs

CASL-U-2015-0162-000

Performance Model
Development and

Analysis for the 3-D
Method of

Characteristics

Brendan Kochunas and Thomas Downar
University of Michigan

April 19, 2015

ANS MC2015 - Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte

Carlo (MC) Method • Nashville, TN • April 19-23, 2015, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2015)

PERFORMANCE MODEL DEVELOPMENT AND ANALYSIS FOR

THE 3-D METHOD OF CHARACTERISTICS

Brendan Kochunas

 and Thomas Downar

Department of Nuclear Engineering and Radiological Sciences

University of Michigan

2355 Bonisteel Blvd.

Ann Arbor, MI 48109

bkochuna@umich.edu; downar@umich.edu

ABSTRACT

In this paper we present a methodology for developing and analyzing a detailed latency

based performance model applied to a parallel algorithm to solve the 3-D Boltzmann transport

equation using the method of characteristics. The performance model is verified against

experiment and observed to predict the execution time of the algorithm to within 10% of the

measured execution times. An analysis of the performance model is then performed to evaluate the

algorithms sensitivity to machine hardware characteristics in both serial and parallel execution.

This analysis shows that improvements to network latency would provide minimal benefits with

respect to the algorithm, while increasing bandwidth can provide some modest enhancements in

parallel performance. The algorithm is found to have a theoretical peak performance of 10% of the

machine theoretical peak, while only half of the algorithm’s peak is realized. This suggests

continued work is needed to improve the performance of the algorithm in serial. The scalability of

the algorithm is predicted and observed to be very good with efficiencies over 90% for O(10
5
)

processors. The model also predicts good scalability past O(10
6
) processors.

Key Words:3-D MOC, performance model, parallel

1 INTRODUCTION

Algorithm development and analysis with respect to performance parameters are of key

interest to major DOE computational initiatives such as the Center for Exascale Simulation of

Advanced Reactors (CESAR) [1]. With the increasing access to high performance computers and

massively parallel micro-processors, many of the existing implementations for particular

algorithms may become obsolete. The exascale initiative within DOE's Office of Science has

made it a priority to prepare algorithms for the next class of leadership computers by supporting

programs for application readiness and early science such as NERSC Exascale Science

Application Program (NESAP) [2], the Center for Accelerated Application Readiness (CAAR)

program [3] at the Oak Ridge Leadership Computing Facility, and the Early Science Program

(ESP) program [4] at the Argonne Leadership Computing Facility.

Traditionally, methods development within the field of nuclear engineering, and in

computational transport, generally consists of steps for mathematical analysis and numerical

experimentation. In the former the solution to the Boltzmann transport equation is typically

derived with approximations, a discretization, and frequently an iteration scheme. At this point

the method can often be mathematically analyzed for very simple model problems (e.g. infinite

 Corresponding author

CASL-U-2015-0162-000

Brendan Kochunas and Thomas Downar

 Page 2 of 15

homogeneous media with one group) to determine its range of stability, error properties, and

convergence properties. The culmination of the information gained through the mathematical

analysis allows researchers to create several hypotheses about the numerical method when

applied to more realistic problems.

Provided one has developed a method that is mathematically attractive, the next phase of

research typically includes verifying the mathematical analysis by implementing the method in

some programming language to be executed on some computer architecture, then performing

numerical experiments on model problems. This numerical experimentation generally continues

being applied to progressively more complex and realistic problems.

In this paper we demonstrate how to compliment the traditional approach to methods

research by developing and analyzing a detailed performance model for our numerical method

on the parallel 3-D method of characteristics (MOC) that allows one to: (1) obtain a performance

model to predict execution time that depends on fundamental machine characteristics and key

problem size parameters and (2) analyze the performance model to guide algorithm development

and implementation.

This type of analysis complements the existing tools utilized for methods research as it

provides a solid foundation for analyzing the question of "how efficiently can this method

perform on a computer architecture?" and allowing researchers to understand more intimately

how a method gets executed on a machine. This can yield extremely critical information when

considering the feasibility of a numerical method. Furthermore, it provides guidance on how to

most efficiently implement a method, thus saving effort post-implementation to do performance

optimization. If a method is not properly implemented, such that it efficiently uses computer

resources, then it does not matter how accurate or quickly converging it may be, as the

community may come to understand the method as being "slower" than alternative methods.

The paper is organized as follows: Section 2 gives a brief overview of the 3-D MOC

algorithm that is the focus of this work. Section 3 of this paper describes the development of the

performance model. Then in Section 4 the model is compared to experiment and analyzed to

provide some insights about the algorithm's bottlenecks and how hypothetical computer

architectures might affect the performance. Lastly, Section 5 presents the conclusions.

2 OVERVIEW OF PARALLEL 3-D MOC SWEEP KERNEL

The 3-D MOC kernel that is the focus for this study was described in detail in previous work

[5]. This section simply provides a brief overview of the algorithm. The 3-D Boltzmann transport

equation is given as

     

        






 



G

g

gggs

G

g

ggf

eff

g

ggtg

drrdrr
k

rrr

1

4

0
,

1

4

0
,

,

,,,
4

,,














 (1)

Applying the characteristics transformation yields:

CASL-U-2015-0162-000

Performance Model Development and Analysis for 3-D MOC

 Page 3 of 15

        


,,, 000,0 srqsrsrsr
ds

d
gggt

g



. (2)

This equation can then be solved after applying the usual MOC approximations and

discretizations for multi-group, discrete ordinates, spatially flat sources in a fine mesh region,

constant material properties in a region, and isotropic scattering. Solutions may be obtained for

higher order scattering and spatially linear sources in a straightforward manner. However, for

simplicity, the focus of this paper will consider only isotropic flat sources. The discretized

solution of the MOC equation is given by:

  migitmigit s

git

mgisin

mgi

out

mgi e
q

e ,,,,,, 1
,,

,,

,,,,





 . (3)

Averaging Eq. (3) over the segment yields the expression for the segment average angular flux.

git

mgi

migit

out

mgi

in

mgi

mgi

q

s ,,

,,

,,,

,,,,

,,









 . (4)

The scalar flux is readily obtained from Eq. (4) by






k

kmkmi

k

kmkmikmgi

mgi
As

As

,,,

,,,,,,

,,




 , (5)

 
m

mgimgi w ,,,  . (6)

Through the use of algebra Eq. (3) through Eq. (6) may be rewritten to eliminate many

arithmetic operations. These forms of the equations are given as:

 mgigi

git

gi

gi qq
q

q ,,,

,,

,

, , 


 , (7)

     kmigitgi

in

kmgi

d

kmgi sq ,,,,,,,,,,, exp1   , (8)

 
k

d

kmgimgi ,,,,,
ˆ  , (9)

 
m

mgimmgi Aw ,,,
ˆˆ  , (10)

   gi

giti

gi

gi q
V

,

,,

,

, 4
ˆ




 


 . (11)

CASL-U-2015-0162-000

Brendan Kochunas and Thomas Downar

 Page 4 of 15

Other common features of MOC kernels include the use of interpolation of tabulated values

of the exponential function [6] and modular ray tracing. For the purposes of developing a

performance model, the MOC kernel is described to execute with the steps described in Figure 1.

Here much of the detail is left out as it is too cumbersome to describe adequately, but may be

found in [5]. It is also worth noting that this kernel description is very similar to some 2-D MOC

solvers. Although one key difference compared to other published MOC kernel algorithms [7], is

that this kernel would be called from inside a loop over neutron energy groups. One could move

the loop over energy groups inside of step 1.a.iv in Figure 1 and achieve better serial

performance by avoiding duplication of the memory movement in steps 1.a.i and 1.a.ii as

suggested by [7]. However, this approach does require more memory storage since the all

macroscopic cross sections must exist in memory at once, rather than one group a time.

Figure 1. Parallel, 1-group 3-D MOC Kernel Description (parallel specific operations are shown in red)

3 PERFORMANCE MODEL DEVELOPMENT

3.1 Abstract Machine Model

In the development of a performance model, the first step is to make some assumptions

about the target computer architecture. Most current generation leadership class machines and

high performance compute clusters can be abstractly described as a series of compute nodes

1. Loop over all angles in angle subdomain

a. Loop over all long rays in angle in parallel with threads

i. Order the modular ray data for a complete long ray

ii. Evaluate the exponential function for all segments in

the long ray

iii. Load incoming boundary conditions for each end of ray

iv. Loop over all segments in the long ray

1. Evaluate Eq. (8) in forward direction

2. Accumulate d

kmgi ,,, into temporary for Eq. (9) for

forward direction.

3. Evaluate Eq. (8) in backward direction

4. Accumulate d

kmgi ,,, into temporary for Eq. (9) for

backward direction.

v. Store outgoing boundary conditions for each end of ray

b. Accumulate
mgimm Aw ,,̂ into temporary for Eq. (10)

c. Wait for all threads to finish loop over long rays

d. Send outgoing boundary conditions to neighbor subdomains

in space

2. Add partial sums of Eq. (11) from all threads

3. Add partial sums of Eq. (11) from all angular domains

4. Evaluate Eq. (12) for all regions
5. Wait for all incoming boundary conditions from neighbor

subdomains in space

CASL-U-2015-0162-000

Performance Model Development and Analysis for 3-D MOC

 Page 5 of 15

connected by a network, with each node being something like a symmetric multi-processor.

Newer heterogeneous architectures that make use of GPUs such as Titan [8], could have a

slightly different on-node model than what is described here. The abstract machine model in this

analysis is illustrated in Figure 2.

This model does not specify anything about the network topology or specific details of the

intra-node architecture such as the number of floating point arithmetic units or number of levels

and sizes of cache. These details are intentionally left out of this abstract model such that more

general equations for performance may be derived. From this model the implied machine

characteristics that will be used in the present analysis are defined in Table I.

Figure 2. Illustration of Machine Model

Table I. Model architecture hardware performance properties

Symbol Name Example Unit

C Clock speed cycle/s
tf time per FLOP cycles/FLOP
αj cache latency cycles/access
αmem memory latency cycles/access
αnetwork network latency μs
βnetwork inverse network bandwidth s/MB

3.2 Basic Equations of Performance Models

For the performance of an algorithm in scientific computing the conventional metric is the

number of floating point operations (FLOPs) per unit time; typically this is expressed in units of

millions of floating point operations per second or MFLOPS
1
. The basic equations presented

here come from [9]. Eq. (12) is the equation that will be used for performance.

T

F
P  . (12)

1
The notation used here is: FLOPs, with a "s", denotes plural of FLOP (floating point operation) while FLOPS, with

a "S", denotes FLOPs per second.

Node n

Main Memory (Shared)

…L1 Cache

L2 Cache

Lκ Cache

L1 Cache

L2 Cache

Lκ Cache

L1 Cache

L2 Cache

Lκ Cache

RegistersCPU

…… …

PNP1P0

Node 0 Node 1 Node n… Node N…

Network

CASL-U-2015-0162-000

Brendan Kochunas and Thomas Downar

 Page 6 of 15

where F is the total number of FLOPs executed and T is the execution time.

It is also often valuable to compare measured performance against the hardware’s theoretical

peak performance to obtain a fraction of the theoretical peak. The theoretical peak performance

is defined in terms of the hardware properties of Table I as:

 fpeak tCP  . (13)

In Eq. (12) F and T are naturally going to be functions of the problem size. These functions

can be expressed in terms of the problem size factors for the 3-D MOC kernel as will be shown

in the next section. In general, F is the number of floating point operations, and is solely a

function of the algorithm. However, the function for execution time, T, also depends on the

hardware properties. A latency-based model for the execution time is shown in Eq. (14), where

the memory access times to each level of the memory hierarchy are treated explicitly.

     



 MMLFtT mem

j

jjjF  






1

1

11 . (14)

In this equation the right hand side could be represented in units of clock cycles, as

suggested by Table I, or it can be converted to units of time through multiplication of the

processor's clock speed, C. The memory access time or cache latency is given by α, M is the

number of cache misses at a given level of cache, and κ is the number of levels of cache on the

machine. L is the number of load operations; where a load operation consists of moving a piece

of data, such as a word or byte, from memory to a register on the processor. A cache miss occurs

when a processor attempts to load some data from a given cache level and the data is not present

in that cache level. Therefore the processor must retrieve this data from a higher level of cache or

main memory resulting in a cache miss. Explicitly accounting for an algorithms memory access

patterns is key to understanding and obtaining good performance from an implementation.

Additionally, as will be shown in Section 4.1, the upper and lower bounds of performance can be

obtained from Eq. (14).

Note that there are several kinds of cache misses in addition to the compulsory misses

described in the previous paragraph. Eq (14) does not explicitly distinguish between the types of

cache misses such as compulsory misses, conflict misses, or capacity misses; nor does it

explicitly treat the cache-line size. However, each of these items can be handled explicitly if

included in the definition of the expression for cache misses, M. Additionally, there are other

kinds of operations that do take time on normal computing architectures, such integer arithmetic,

accesses and misses to the translation lookaside buffer (TLB), various I/O operations, etc. Eq.

(14) justifiably ignores most of these since it is being applied to a floating point intensive kernel

where the primary actions involve FLOPs and memory movement. Thus for other computational

kernels that involve significant I/O or alternate expressions for the execution time as a function

of hardware properties would need to be developed.

3.3 Component-based Description of Serial 3-D MOC Kernel

The 3-D MOC kernel described in Figure 1 contains several steps, or components. To

facilitate the expression of this algorithm in the form of Eq. (14) we define several components

of the kernel. This section first considers the serial execution of the kernel with Section 3.4

CASL-U-2015-0162-000

Performance Model Development and Analysis for 3-D MOC

 Page 7 of 15

describing the performance for the parallel kernel. The time for a single 1-group transport sweep

or function call of the 3-D MOC kernel in serial is expanded as:

 fluxBCUpscalBCMOCbuildsweep TTTTTTTT  exp . (15)

Similarly, the expression for the number of FLOPs is expanded as:

 fluxBCUpscalBCMOCbuildsweep FFFFFFFF  exp . (16)

The build component describes the ordering of the ray tracing data (e.g. segment lengths and

region indices) from its global data structures into local arrays for the subsequent loops in the

kernel; steps 1.a.i and 1.a.ii of Figure 1. The exp component represents the operations for the

linear interpolation of tabulated values of the exponential function. In the MOC component Eq.

(8) and Eq. (9) are evaluated. The BC and BCUp components only move data in memory and do

not perform any FLOPs, the operations executed are to obtain the incoming angular flux

boundary condition and update the outgoing boundary condition, respectively. The scal

component accounts for 1.b in Figure 1, which scales the partial sums accumulated for the scalar

flux by their respective angular weights. Finally, evaluating the scalar flux as shown by Eq. (11)

is represented by the flux component.

A summary of the values for the number of FLOPs and Loads for the 3-D MOC kernel

components are given in Table II as a function of problem the dependent parameters:

 nseg - total number of track segments over all characteristic rays in all discrete

angles in the entire problem domain

 nreg - total number of flat source regions in the entire problem domain

 nlongray - the total number of characteristic rays in all discrete angles in the entire

problem domain

 nangoct - number of discrete angles in one octant of the unit sphere

Table II. Number of FLOPS and Loads for 3-D MOC kernel

Component FLOPs Loads
Computational Intensity

(FLOPS/Loads)

build nseg cbuild × nseg 1 / cbuild
exp 3 × nseg 6 × nseg 0.5

MOC 8 × nseg 12 × nseg 0.75
BC 0 8 × nlongray 0

BCUp 0 4 × nlongray 0

scal 8 × nreg × nangoct
8 × nreg × nangoct

+4 × nangoct
~1.0

flux 4 × nreg 4 × nreg 1.0

Sweep (Total)
12 × nseg

+8 × nseg × nreg

+3 × nreg

(18+ cbuild) × nseg

+12 × nlongray

+8 × nangoct × nreg

+4 × nreg + 4 × nangoct

0.0 < C.I. < ~0.5

CASL-U-2015-0162-000

Brendan Kochunas and Thomas Downar

 Page 8 of 15

For each of the components the FLOP count can be determined exactly by examining the

respective equations and pseudo-source code. To evaluate Eq. (15) the number of loads for each

component must be known as required by Eq. (14). In general, determining the number of loads

is a more difficult problem than determining the number of FLOPs, and in some cases the

number of loads cannot be determined exactly from the algorithm or source code. For the 3-D

MOC kernel described in Figure 1, the loads for all components can be determined in a

straightforward manner except for the build component which has memory access patterns that

are difficult to generalize. Consequently, the examination reveals that the number of loads should

be proportional to the number of segments, thus a problem dependent constant, cbuild, is assumed.

This coefficient can be determined empirically with good accuracy and we conjecture it should

be valid over a wide range of problems that exhibit similar modularity of their geometry.

3.4 Extension of Performance Model for Parallel Overhead

To properly account for the execution time of the parallel kernel an expression for the

communication time must be developed and applied to the exact communication patterns used in

the implementation. The equation that describes the time for point-to-point communication,

where N is the message size is:

 NT networknetworkcomm   . (17)

The algorithm in Figure 1 also includes a reduction operation in angle. This is implemented

with an MPI_Allreduce. Several all reduce algorithms may be available in an MPI

implementation, and each has their own execution time model. The details of which can be found

in open literature [10]. Lastly, the overhead from the shared memory parallelism implemented

with OpenMP is simply a linear combination of the OpenMP library functions used by the

kernel. The actual execution times of the OpenMP library functions can be obtained from readily

available micro-benchmarks [11]. Adding the terms for the parallel overhead and accounting for

the reduction in operations from the parallel decomposition, modifies (15) and (16) to yield the

following equations for the FLOPs and execution time of the parallel 3-D MOC kernel.

space

rayflux

angspace

scal

rayangspace

BCMOCbuild

sweep
p

FF

pp

F

ppp

FFFF
F







exp
. (18)

 























spaceang

space

rayflux

rayOMP

angspace

scal

rayangspace

BCMOCbuild

sweep

TT
p

TT
pT

pp

T

ppp

TTTT
T

,max

exp

, (19)

Note here that the last two terms of Eq. (19) account for the parallel overhead. with p giving the

number of domains or processors used for each decomposition. The expressions for the TOMP,

Tang, and Tspace are:

CASL-U-2015-0162-000

Performance Model Development and Analysis for 3-D MOC

 Page 9 of 15

  
  32

nface
space

BCUp

spacenetworknetworkspace
p

T
NT   . (20)

  
space

network

ang

ang

networkang
pp

p
pT

nreg
2

1
log2ang 


  . (21)

        

 .
chunk

nlongray

nangoct42

raySCHEDULE
ray

raySINGLErayBARRIERrayPARALLELrayOMP

pT
p

pTpTpTpT













. (22)

In Eq. (21) γ is the computation cost per byte transferred since the reduction operation naturally

performs some operation, and in our case it is a summation.

4 PERFORMANCE MODEL ANALYSIS

4.1 Theoretical Bounds of the 3-D MOC Kernel Performance

The theoretical upper and lower bounds of the performance model are essentially

determined by the possible upper and lower bounds of the cache misses. Similarly other

evaluations can be investigated by artificially changing the value of the number of misses; for

example, the effect of cache evictions could be modeled by assuming they occur at some

frequency. The cache misses are the primary factor that may change based on implementation of

the exact algorithm described. The two extremes to consider for the cache miss bounds are: every

access is a miss or every access is a hit. The latter is analogous to assuming an infinitely large L1

cache that is fully associative. One could argue that the absolute lower bound is actually to

assume zero for all memory access times, but this assumption results in a non-latency based

performance model, and is not particularly useful to analyze.

4.1.1 Comparison to numerical experiment

To verify that the performance model is reflective of reality, the kernel was instrumented and

measured using PAPI [12]. The values for each component in the model given in Table II was

verified against measurement and the overall execution time model in serial and parallel was also

verified [5]. The test platforms used for experimental comparison were Titan [8] and a Linux

workstation, that has four AMD Opteron
™

 6238 hex-core processors. Four test cases involving

varying discretizations based on a small cluster of pins were examined to insure that the correct

characterization of the problem dimension parameters was performed. Table III shows the

comparison of the component predicted run-times for the model versus experiment. The

agreement is generally quite good with only a relative difference within 10%.

Table III. Comparison of measured and computed execution times

Case
Measured

Execution Time (s)
Predicted

Execution Time (s)
Relative Difference

Default 1.2991 1.2029 -7.41%

Fine Angle 2.0150 1.8663 -7.38%

Fine Rays 3.8637 4.0357 +4.45&

Fine Space 1.7228 1.6902 -1.89%

CASL-U-2015-0162-000

Brendan Kochunas and Thomas Downar

 Page 10 of 15

Table IV shows the measured performance for the kernel and estimated upper and lower

bounds. The measured performance is within the estimated upper and lower bounds, therefore

providing further data to support the validity of the model for predicting the performance of the

kernel as a function of the problem size and machine hardware characteristics.

Table IV. 3-D MOC kernel performance in serial on Sunspear

Case
Measured

(MFLOPS)
Lower Bound

(MFLOPS)
Upper Bound

(MFLOPS)
Realized Fraction of

Upper Bound

Default 466.4 0.467 897.0 52.0%

Fine Angle 464.6 0.469 897.0 51.8%

Fine Rays 441.7 0.468 896.2 49.3&

Fine Space 485.2 0.166 904.1 53.7%

It is observed that only ~50% of the theoretical upper bound is realized, which suggests that

some improvements may be possible to further reduce the cache misses. The theoretical peak

performance of one core on the Linux cluster is 10.4 GFLOPS, which means that the initial

performance of the kernel is getting roughly 4.5% of this peak.

The upper bound on the kernel performance neglects all cache misses and only counts L1

accesses. The upper bounds in Table IV used execution times based on 1 FLOP/cycle and 1

load/cycle; the ~900 MFLOPS predicted as the upper bound on performance is approximately

9% of the processor’s theoretical peak. If Eq. (14) is simplified to only include the time for loads

to the registers, then it can reduced to:
















F

L

t
FtT

f

f
11


. (23)

Eq. (23) provides some insight into the maximum possible performance expected from the

MOC kernel. For the 9% of peak performance estimated for the MOC kernel the α1/tf factor is

1.0. To achieve at least half of the peak performance, an algorithm would need an L/F ratio of

1.0. From data in Table II, it is estimated that the L/F ratio for the kernel is at least 2.0. With this

value, the maximum fraction of the peak performance achievable would only be 33%. In

actuality the L/F of the problems tested is probably closer to 9.0, implying that the observed

computational intensity of the kernel is quite low at ~0.10. This also suggests some possible

improvement to the kernel through reducing the L/F ratio. Through further analysis of Eq. (23), it

can be deduced that an architecture that gives better performance would mean that the machine

balance, α1/tf, would need to be less than 1.0. Unfortunately, for the assumed target architecture,

this is never the case, and does not appear to be the case for any near term architectures.

4.2 Kernel Sensitivity to Intra-Node Architecture

The first sensitivity examined is the model’s sensitivity to tf and α1 and levels of cache, κ; all

of which apply to the serial algorithm. Instead of using the overly-simplistic theoretical upper or

lower bounds for cache misses, the observed cache misses from the default test case are used.

For this case, M1 was 8.43% of the loads and M2 was 0.07% of the loads. To simplify the analysis

CASL-U-2015-0162-000

Performance Model Development and Analysis for 3-D MOC

 Page 11 of 15

M1=8.5% is assumed. All other levels of cache assume a miss ratio of Mj = 0.01×Mj-1. Finally

αmem is assumed to be 1000 ns.

The predicted performance for each case is shown as a contour plots in figures 3 through 6

for the different values of κ. The cache latencies for levels of cache are assumed where the access

latency for each level αj = 10αj-1 for j > 1.

The data in Figure 3 is consistent with the theoretical upper bound (zero cache misses) of

performance for the 3-D MOC kernel. Several lines are overlaid on the contours to show when

the performance becomes more sensitive to a particular hardware property. The region above the

magenta line describes an architecture in which the time per flop is at least 4x faster than the

time for a memory access. In this region it is observed that the performance is more sensitive to

the average memory access time, and the performance of the kernel will be limited by this

hardware characteristic. The other line (blue) in Figure 3 describes when the time per flop and L1

cache access time are equivalent. The region below this line is indicative of an architecture in

which the cache access time is faster than the time per flop, which is generally not the type of

architecture that is manufactured. However, for an architecture of this type the performance

would be dictated by the time per flop. The region between the two lines is fairly indicative of

most commodity architectures, and in this region the performance is generally more sensitive to

cache access time compared to the time per flop. The magenta and cyan regions denote where the

hardware characteristics of test machines used in this work were measured.

Figure 3. Sensitivity of peak performance to

α1 and tf

Figure 4. Sensitivity of performance to α1 and tf for

single-level cache

In Figure 4 the performance does not really change with either hardware property, and

instead is limited by the 1 μs access time to retrieve data form main memory. Figure 5 shows the

performance sensitivity for an architecture with a two level cache. Here the performance is still

severely limited by the access time to main memory compared to the peak performance of Figure

3. However, there is some sensitivity to the time per flop and the cache access latency. The

sensitivities for the two level cache basically behave in a similar manner as peak performance

case, although the magnitude of these sensitivities is reduced considerably.

9000 5000

2000

1000

500

300

200

100

9000 5000

2000

1000

500

300

200

100

Titan   Sunspear

Average Time per FLOP (ns)

L
1
 C

a
c
h
e
 a

c
c
e
s
s
 L

a
te

n
c
y
 (

n
s
)

Peak Performance (MFLOPS)

100

200

300

500

1000

2000

50009000

10
-2

10
0

10
-2

10
-1

10
0

10
1

Performance


1
/t

f
=4


1
/t

f
=1

1000

2000

3000

4000

5000

6000

7000

8000

9000

4.275

4.27

4.26

4.24

4.2

4.275

4.27

4.26

4.24

4.2

Average Time per FLOP (ns)

L
1
 C

a
c
h
e
 a

c
c
e
s
s
 L

a
te

n
c
y
 (

n
s
)

Performance (MFLOPS) =1

4.2

4.24

4.26

4.27

4.275

10
-2

10
0

10
-2

10
-1

10
0

10
1

Performance


1
/t

f
=4


1
/t

f
=1

4.2

4.21

4.22

4.23

4.24

4.25

4.26

4.27

CASL-U-2015-0162-000

Brendan Kochunas and Thomas Downar

 Page 12 of 15

Figure 5. Sensitivity of performance to α1 and tf for

two-level cache

Figure 6. Sensitivity of performance to α1 and tf for

three-level cache

With the three level cache architecture shown in Figure 6, the performance sensitivity to the

hardware properties is very similar to that observed in Figure 3. However, for a given (tf,α1) pair,

the predicted performance in Figure 6 is approximately half of Figure 3, which is consistent with

Table III. This would indicate that, assuming the cache misses are reduced by a factor of 100 at

each level and the memory access times are increased by only a factor of 10, then this becomes a

very good architecture for achieving behavior similar to the peak performance of the algorithm.

Although it is not shown, the case of an architecture with a four level cache was also investigated

and it was observed to have almost exactly the same performance as the architecture with three

cache levels.

4.3 Kernel Sensitivity to Inter-Node Architecture

First, the effect of the network latency and bandwidth on the spatial decomposition overhead

is examined, specifically the Tspace term of Eq (20). In Figure 7 this function is plotted against the

bandwidth and latency of the network hardware. The measured range of latency and bandwidth

for the test machine, Titan, is highlighted by the magenta rectangle.

As the bandwidth limits to large numbers and the latency limits to 0, Tspace asymptotically

approaches the reduced TBCUp time. The contours of Figure 7 show that Tspace approaches this

asymptote rather quickly. Furthermore, very little reduction in the overhead is obtained once the

bandwidth exceeds 10 MB/s and the latency is less than 10 μs. This suggests that efforts to

improve the performance of the network architecture would have little benefit in reducing the

overhead of the spatial decomposition, and that the performance of the network hardware on

Titan is already near optimal for this algorithm.

Next, for the angular decomposition, the sensitivity of the overhead is evaluated against the

network hardware characteristics, and the problem size and number of domains. These

sensitivities are highly dependent on the MPI_Allreduce algorithm, represented by Eq. (21), but

independent of the rest of the kernel. The sensitivities to the network hardware are shown in

Figure 8, and the measured network hardware latency and bandwidth are indicated by a magenta

box in each figure. The overhead is observed to be largely a function of the network bandwidth

400

350 300

250 200

150

100

50

400

350 300

250 200

150

100

50

Average Time per FLOP (ns)

L
1
 C

a
c
h
e
 a

c
c
e
s
s
 L

a
te

n
c
y
 (

n
s
)

Performance (MFLOPS) =2

50

100

150

200250

300350

400

10
-2

10
0

10
-2

10
-1

10
0

10
1

Performance


1
/t

f
=4


1
/t

f
=1

50

100

150

200

250

300

350

400

9000
5000

2000

1000

500

300

200

100

9000
5000

2000

1000

500

300

200

100

Titan   Sunspear

Average Time per FLOP (ns)

L
1
 C

a
c
h
e
 a

c
c
e
s
s
 L

a
te

n
c
y
 (

n
s
)

Performance (MFLOPS) =3

100

200

300

500

1000

2000

5000
9000

10
-2

10
0

10
-2

10
-1

10
0

10
1 Performance


1
/t

f
=4


1
/t

f
=1

1000

2000

3000

4000

5000

6000

7000

8000

9000

CASL-U-2015-0162-000

Performance Model Development and Analysis for 3-D MOC

 Page 13 of 15

and, the magnitude of the overhead is about 1000x times higher for the angular decomposition

compared to the spatial decomposition. Additionally, any increase in bandwidth above 100 MB/s

provides little benefit to reducing the angle decomposition overhead.

Figure 7. Sensitivity of the spatial decomposition

overhead to network hardware characteristics

Figure 8. Sensitivity of angle

decomposition overhead to network hardware

characteristics

4.4 Parallel Performance

The parallel performance model was then evaluated to predict the scalability of the

algorithm. The basic hardware characteristics of Titan were used, and the assumed problem for

the analysis was an idealized quarter core PWR that uses pin-wise spatial decomposition and a

pin-wise discretization that is consistent with the performance test problems studied in Section

4.1. As shown in Figure 10 the model predicts that parallel efficiencies greater than 90% can be

achieved out to nearly 30 million processors by using only space and angle decomposition.

However, it is unlikely this performance could be observed in practice because the model

assumes the hardware and run time system will scale to this many cores, which has yet to be

demonstrated. The current intra-node architecture is likely to change considerably in the next

generation of leadership class architectures.

Also as indicated in Figure 10, the rate of decrease in parallel efficiency is faster for space-

ray decomposition than it is for space-angle decomposition. Therefore, in order to maximize the

parallel efficiency it is essential to maximize the spatial decomposition. If more processors are

available, then it is recommended to use the angular decomposition to add a factor of 2 to 8

additional domains. However, if the spatial domain is not maximized, perhaps because of poor

load balancing or an insufficient number of processors for the next level of spatial

decomposition, then it is better to add more processors through ray decomposition rather than

angle decomposition. This analysis assumed perfect load balancing in the decomposition.

However, in practice this is not always possible and using decompositions with a poor load

balance will negatively affect the parallel efficiency much more than the estimate in this

parametric study.

1
0.750.5

0.3
0.25

1
0.750.5

0.3
0.250.25

0.3

0.5 0.75
1

Network Latency (s)

B
a
n
d
w

id
th

 (
M

B
/s

)



 Titan

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spatial Decomp. Overhead (ms)


network

 = 10 s

1/
network

 = 10 MB/s

1.000
0.500

0.100

0.030

0.020

0.016

1.000
0.500

0.100

0.030

0.020

0.0160.016

0.020

0.030

0.100

0.500
1.000



 Titan

Network Latency (s)

B
a
n
d
w

id
th

 (
M

B
/s

)

Angle Decomposition Overhead (s) for

Cray MPI_Allreduce algorithm
(=11 ns,p

ang
=16)

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

0.1

1

CASL-U-2015-0162-000

Brendan Kochunas and Thomas Downar

 Page 14 of 15

Figure 10. Estimated strong scaling efficiency for PWR 1/4 core

5 CONCLUSIONS AND FUTURE WORK

This paper presented a conceptual model of the target architecture and the basic equations

for a latency based performance model. Expressions for the FLOP and load counts of the 3-D

MOC kernel were developed in terms of key problem size parameters. This performance model

was then extended to the parallel algorithm. The performance model was verified for a specific

machine whose architecture fits within the conceptual model using four small problems with

representative meshing. The FLOP counts are exact, while the load counts and execution time

may have uncertainties of up to 10%.

The baseline performance of the serial kernel was then given, and the measured performance

was shown (4.5% machine peak) in comparison to the model performance bounds (9% of

machine peak). A parametric study of the performance as a function of the hardware properties

was presented to indicate the types of architectures that are likely to get the best performance,

and which properties have the greatest influence on performance. The overhead for the spatial

and angular decomposition were examined separately with respect to the network’s latency and

bandwidth. Both types of decomposition were shown to be relatively insensitive to the network

latency, provided the network bandwidth was at least 100 MB/s. Additionally, further increasing

the network bandwidth beyond 100 MB/s or reducing the network latency below 0.1 ms would

provide little improvement in performance. Since many modern high performance compute

clusters already have networks with a higher bandwidth and lower latency, it may be concluded

that these types of decompositions will continue to perform well on future network architectures.

Finally, the parallel performance model for the strong scaling efficiency was evaluated for

various decompositions, assuming problem size of the order of a quarter core PWR. The parallel

performance model estimates that up to 30 million processors can be used while still maintaining

efficiency greater than 90%, provided the hardware and run-time system scale. Future work will

focus on evaluating different algorithms that have better serial performance and alternate

implementations that realize a higher fraction of the theoretical peak of the algorithm.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0

10

20

30

40

50

60

70

80

90

100

Number of Processors

P
a
ra

lle
l
E

ff
ic

ie
n
c
y
 (

%
)

1 thread

2 threads

4 threads

8 threads

16 threads

CASL-U-2015-0162-000

Performance Model Development and Analysis for 3-D MOC

 Page 15 of 15

6 ACKNOWLEDGEMENTS

This research was supported by the Consortium for Advanced Simulation of Light Water

Reactors (www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for

Modeling and Simulation of Nuclear Reactors and made use of resources of the Oak Ridge

Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the

Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

This work was also performed in the partial fulfillment of the requirements for the PhD degree

from the University of Michigan.

7 REFERENCES

1. Argonne National Lab, “CESAR: Center for Exascale Simulation of Advanced Reactors”

(2014) https://cesar.mcs.anl.gov/.

2. National Energy Research Scientific Computing Center, “NESAP Projects” (2014)

https://www.nersc.gov/users/computational-systems/cori/nesap/.

3. Oak Ridge Leadership Computing Facility, “OLCF CENTER FOR ACCELERATED

APPLICATION READINESS”, (2014) https://www.olcf.ornl.gov/summit/caar-call-for-

proposals/.

4. Argonne Leadership Computing Facility, “Early Science Program” (2014)

https://www.alcf.anl.gov/programs/esp.

5. B. Kochunas, “A Hybrid Parallel Algorithm for the 3-D Method of Characteristics Solution

of the Boltzmann Transport Equation on High Performance Compute Clusters”, PhD

Dissertation, University of Michigan, http://deepblue.lib.umich.edu/handle/2027.42/100072

(2013)

6. A. Yamamoto, Y. Kitamura, and Y. Yamane, “Computational efficiencies of approximated

exponential functions for transport calculations of the characteristics method,” Annals of

Nuclear Energy, 68, 1027-1037, (2014).

7. W. Boyd, et. al, “The OpenMOC method of characteristics neutral particle transport code,”

Annals of Nuclear Energy, 31, 43-52, (2004).

8. Oak Ridge Leadership Computing Facility, “Introducting Titan - The World's #1 Open

Science Supercomputer,” (2013), http://www.olcf.ornl.gov/titan/.

9. R.W. Vuduc, Automatic Performance Tuning of Sparse Matrix Kernels, Ph.D. thesis,

University of California, Berkeley (2003).

10. R. Thakur, R. Rabenseifner, and W.D. Gropp, “Optimization of Collective Communication

Operations in MPICH,” Intl. J. of HPC Applications, 19, 1, 49-66 (2005).

11. J.M. Bull and F. Reid, “OpenMP Microbenchmarks V2.0,” (2013),

http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_index.html.

12. S. Browne, et al., “A Portable Programming Interface for Performance Evaluation on Modern

Processors,” Intl. J. of HPC Applications, 14, 3, 189-204 (2004).

CASL-U-2015-0162-000

http://www.casl.gov/
https://cesar.mcs.anl.gov/
https://www.nersc.gov/users/computational-systems/cori/nesap/
https://www.olcf.ornl.gov/summit/caar-call-for-proposals/
https://www.olcf.ornl.gov/summit/caar-call-for-proposals/
https://www.alcf.anl.gov/programs/esp
http://deepblue.lib.umich.edu/handle/2027.42/100072
http://www.olcf.ornl.gov/titan/
http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_index.html

	paper_112_1.pdf
	Papers

