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ABSTRACT 

In this paper we present a methodology for developing and analyzing a detailed latency 

based performance model applied to a parallel algorithm to solve the 3-D Boltzmann transport 

equation using the method of characteristics. The performance model is verified against 

experiment and observed to predict the execution time of the algorithm to within 10% of the 

measured execution times. An analysis of the performance model is then performed to evaluate the 

algorithms sensitivity to machine hardware characteristics in both serial and parallel execution. 

This analysis shows that improvements to network latency would provide minimal benefits with 

respect to the algorithm, while increasing bandwidth can provide some modest enhancements in 

parallel performance. The algorithm is found to have a theoretical peak performance of 10% of the 

machine theoretical peak, while only half of the algorithm’s peak is realized. This suggests 

continued work is needed to improve the performance of the algorithm in serial. The scalability of 

the algorithm is predicted and observed to be very good with efficiencies over 90% for O(10
5
) 

processors. The model also predicts good scalability past O(10
6
) processors. 

Key Words:3-D MOC, performance model, parallel 

1 INTRODUCTION 

Algorithm development and analysis with respect to performance parameters are of key 

interest to major DOE computational initiatives such as the Center for Exascale Simulation of 

Advanced Reactors (CESAR) [1]. With the increasing access to high performance computers and 

massively parallel micro-processors, many of the existing implementations for particular 

algorithms may become obsolete. The exascale initiative within DOE's Office of Science has 

made it a priority to prepare algorithms for the next class of leadership computers by supporting 

programs for application readiness and early science such as NERSC Exascale Science 

Application Program (NESAP) [2], the Center for Accelerated Application Readiness (CAAR) 

program [3] at the Oak Ridge Leadership Computing Facility, and the Early Science Program 

(ESP) program [4] at the Argonne Leadership Computing Facility. 

Traditionally, methods development within the field of nuclear engineering, and in 

computational transport, generally consists of steps for mathematical analysis and numerical 

experimentation. In the former the solution to the Boltzmann transport equation is typically 

derived with approximations, a discretization, and frequently an iteration scheme. At this point 

the method can often be mathematically analyzed for very simple model problems (e.g. infinite 

                                                 
 Corresponding author  

CASL-U-2015-0162-000



Brendan Kochunas and Thomas Downar 
 

 Page 2 of 15 

 

homogeneous media with one group) to determine its range of stability, error properties, and 

convergence properties. The culmination of the information gained through the mathematical 

analysis allows researchers to create several hypotheses about the numerical method when 

applied to more realistic problems. 

Provided one has developed a method that is mathematically attractive, the next phase of 

research typically includes verifying the mathematical analysis by implementing the method in 

some programming language to be executed on some computer architecture, then performing 

numerical experiments on model problems. This numerical experimentation generally continues 

being applied to progressively more complex and realistic problems. 

In this paper we demonstrate how to compliment the traditional approach to methods 

research by developing and analyzing a detailed performance model for our numerical method 

on the parallel 3-D method of characteristics (MOC) that allows one to: (1) obtain a performance 

model to predict execution time that depends on fundamental machine characteristics and key 

problem size parameters and (2) analyze the performance model to guide algorithm development 

and implementation. 

This type of analysis complements the existing tools utilized for methods research as it 

provides a solid foundation for analyzing the question of "how efficiently can this method 

perform on a computer architecture?" and allowing researchers to understand more intimately 

how a method gets executed on a machine. This can yield extremely critical information when 

considering the feasibility of a numerical method. Furthermore, it provides guidance on how to 

most efficiently implement a method, thus saving effort post-implementation to do performance 

optimization. If a method is not properly implemented, such that it efficiently uses computer 

resources, then it does not matter how accurate or quickly converging it may be, as the 

community may come to understand the method as being "slower" than alternative methods. 

The paper is organized as follows: Section 2 gives a brief overview of the 3-D MOC 

algorithm that is the focus of this work. Section 3 of this paper describes the development of the 

performance model. Then in Section 4 the model is compared to experiment and analyzed to 

provide some insights about the algorithm's bottlenecks and how hypothetical computer 

architectures might affect the performance. Lastly, Section 5 presents the conclusions. 

2 OVERVIEW OF PARALLEL 3-D MOC SWEEP KERNEL 

The 3-D MOC kernel that is the focus for this study was described in detail in previous work 

[5]. This section simply provides a brief overview of the algorithm. The 3-D Boltzmann transport 

equation is given as 
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Applying the characteristics transformation yields: 
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This equation can then be solved after applying the usual MOC approximations and 

discretizations for multi-group, discrete ordinates, spatially flat sources in a fine mesh region, 

constant material properties in a region, and isotropic scattering. Solutions may be obtained for 

higher order scattering and spatially linear sources in a straightforward manner.  However, for 

simplicity, the focus of this paper will consider only isotropic flat sources. The discretized 

solution of the MOC equation is given by:  

  migitmigit s

git

mgisin

mgi

out

mgi e
q

e ,,,,,, 1
,,

,,

,,,,





 . (3) 

Averaging Eq. (3) over the segment yields the expression for the segment average angular flux. 
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The scalar flux is readily obtained from Eq. (4) by 
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Through the use of algebra Eq. (3) through Eq. (6) may be rewritten to eliminate many 

arithmetic operations. These forms of the equations are given as: 
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Other common features of MOC kernels include the use of interpolation of tabulated values 

of the exponential function [6] and modular ray tracing. For the purposes of developing a 

performance model, the MOC kernel is described to execute with the steps described in Figure 1. 

Here much of the detail is left out as it is too cumbersome to describe adequately, but may be 

found in [5]. It is also worth noting that this kernel description is very similar to some 2-D MOC 

solvers. Although one key difference compared to other published MOC kernel algorithms [7], is 

that this kernel would be called from inside a loop over neutron energy groups. One could move 

the loop over energy groups inside of step 1.a.iv in Figure 1 and achieve better serial 

performance by avoiding duplication of the memory movement in steps 1.a.i and 1.a.ii as 

suggested by [7]. However, this approach does require more memory storage since the all 

macroscopic cross sections must exist in memory at once, rather than one group a time. 

 

 

Figure 1.  Parallel, 1-group  3-D MOC Kernel Description (parallel specific operations are shown in red) 

 

3 PERFORMANCE MODEL DEVELOPMENT 

3.1 Abstract Machine Model 

In the development of a performance model, the first step is to make some assumptions 

about the target computer architecture. Most current generation leadership class machines and 

high performance compute clusters can be abstractly described as a series of compute nodes 

1. Loop over all angles in angle subdomain 

a. Loop over all long rays in angle in parallel with threads 

i. Order the modular ray data for a complete long ray 

ii. Evaluate the exponential function for all segments in 

the long ray 

iii. Load incoming boundary conditions for each end of ray 

iv. Loop over all segments in the long ray 

1. Evaluate Eq. (8) in forward direction 

2. Accumulate d

kmgi ,,,  into temporary for Eq. (9) for 

forward direction. 

3. Evaluate Eq. (8) in backward direction 

4. Accumulate d

kmgi ,,,  into temporary for Eq. (9) for 

backward direction. 

v. Store outgoing boundary conditions for each end of ray 

b. Accumulate 
mgimm Aw ,,̂  into temporary for Eq. (10) 

c. Wait for all threads to finish loop over long rays 

d. Send outgoing boundary conditions to neighbor subdomains 

in space 

2. Add partial sums of Eq. (11) from all threads 

3. Add partial sums of Eq. (11) from all angular domains 

4. Evaluate Eq. (12) for all regions 
5. Wait for all incoming boundary conditions from neighbor 

subdomains in space 
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connected by a network, with each node being something like a symmetric multi-processor. 

Newer heterogeneous architectures that make use of GPUs such as Titan [8], could have a 

slightly different on-node model than what is described here. The abstract machine model in this 

analysis is illustrated in Figure 2. 

This model does not specify anything about the network topology or specific details of the 

intra-node architecture such as the number of floating point arithmetic units or number of levels 

and sizes of cache. These details are intentionally left out of this abstract model such that more 

general equations for performance may be derived. From this model the implied machine 

characteristics that will be used in the present analysis are defined in Table I. 

 

 

Figure 2.  Illustration of Machine Model 

 

Table I. Model architecture hardware performance properties 

Symbol Name Example Unit 

C Clock speed cycle/s 
tf time per FLOP cycles/FLOP 
αj cache latency cycles/access 
αmem memory latency cycles/access 
αnetwork network latency μs 
βnetwork inverse network bandwidth s/MB 

 

3.2 Basic Equations of Performance Models 

For the performance of an algorithm in scientific computing the conventional metric is the 

number of floating point operations (FLOPs) per unit time; typically this is expressed in units of 

millions of floating point operations per second or MFLOPS
1
. The basic equations presented 

here come from [9]. Eq. (12) is the equation that will be used for performance. 

 
T

F
P  . (12) 

                                                 
1
The notation used here is: FLOPs, with a "s", denotes plural of FLOP (floating point operation) while FLOPS, with 

a "S", denotes FLOPs per second. 
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where F is the total number of FLOPs executed and T is the execution time.  

It is also often valuable to compare measured performance against the hardware’s theoretical 

peak performance to obtain a fraction of the theoretical peak. The theoretical peak performance 

is defined in terms of the hardware properties of Table I as: 

 fpeak tCP  . (13) 

In Eq. (12) F and T are naturally going to be functions of the problem size. These functions 

can be expressed in terms of the problem size factors for the 3-D MOC kernel as will be shown 

in the next section. In general, F is the number of floating point operations, and is solely a 

function of the algorithm. However, the function for execution time, T, also depends on the 

hardware properties. A latency-based model for the execution time is shown in Eq. (14), where 

the memory access times to each level of the memory hierarchy are treated explicitly. 

     



 MMLFtT mem

j

jjjF  






1

1

11 . (14) 

In this equation the right hand side could be represented in units of clock cycles, as 

suggested by Table I, or it can be converted to units of time through multiplication of the 

processor's clock speed, C. The memory access time or cache latency is given by α, M is the 

number of cache misses at a given level of cache, and κ is the number of levels of cache on the 

machine. L is the number of load operations; where a load operation consists of moving a piece 

of data, such as a word or byte, from memory to a register on the processor. A cache miss occurs 

when a processor attempts to load some data from a given cache level and the data is not present 

in that cache level. Therefore the processor must retrieve this data from a higher level of cache or 

main memory resulting in a cache miss. Explicitly accounting for an algorithms memory access 

patterns is key to understanding and obtaining good performance from an implementation. 

Additionally, as will be shown in Section 4.1, the upper and lower bounds of performance can be 

obtained from Eq. (14).  

Note that there are several kinds of cache misses in addition to the compulsory misses 

described in the previous paragraph. Eq (14) does not explicitly distinguish between the types of 

cache misses such as compulsory misses, conflict misses, or capacity misses; nor does it 

explicitly treat the cache-line size. However, each of these items can be handled explicitly if 

included in the definition of the expression for cache misses, M. Additionally, there are other 

kinds of operations that do take time on normal computing architectures, such integer arithmetic, 

accesses and misses to the translation lookaside buffer (TLB), various I/O operations, etc. Eq. 

(14) justifiably ignores most of these since it is being applied to a floating point intensive kernel 

where the primary actions involve FLOPs and memory movement. Thus for other computational 

kernels that involve significant I/O or alternate expressions for the execution time as a function 

of hardware properties would need to be developed. 

3.3 Component-based Description of Serial 3-D MOC Kernel 

The 3-D MOC kernel described in Figure 1 contains several steps, or components. To 

facilitate the expression of this algorithm in the form of Eq. (14) we define several components 

of the kernel. This section first considers the serial execution of the kernel with Section 3.4 
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describing the performance for the parallel kernel. The time for a single 1-group transport sweep 

or function call of the 3-D MOC kernel in serial is expanded as: 

 fluxBCUpscalBCMOCbuildsweep TTTTTTTT  exp . (15) 

Similarly, the expression for the number of FLOPs is expanded as: 

 fluxBCUpscalBCMOCbuildsweep FFFFFFFF  exp . (16) 

The build component describes the ordering of the ray tracing data (e.g. segment lengths and 

region indices) from its global data structures into local arrays for the subsequent loops in the 

kernel; steps 1.a.i and 1.a.ii of Figure 1. The exp component represents the operations for the 

linear interpolation of tabulated values of the exponential function. In the MOC component Eq. 

(8) and Eq. (9) are evaluated. The BC and BCUp components only move data in memory and do 

not perform any FLOPs, the operations executed are to obtain the incoming angular flux 

boundary condition and update the outgoing boundary condition, respectively. The scal 

component accounts for 1.b in Figure 1, which scales the partial sums accumulated for the scalar 

flux by their respective angular weights. Finally, evaluating the scalar flux as shown by Eq. (11) 

is represented by the flux component. 

A summary of the values for the number of FLOPs and Loads for the 3-D MOC kernel 

components are given in Table II as a function of problem the dependent parameters: 

 nseg - total number of track segments over all characteristic rays in all discrete 

angles in the entire problem domain 

 nreg - total number of flat source regions in the entire problem domain 

 nlongray - the total number of characteristic rays in all discrete angles in the entire 

problem domain 

 nangoct - number of discrete angles in one octant of the unit sphere 

 

Table II. Number of FLOPS and Loads for 3-D MOC kernel 

Component FLOPs Loads 
Computational Intensity 

(FLOPS/Loads) 

build nseg cbuild × nseg 1 / cbuild 
exp 3 × nseg 6 × nseg 0.5 

MOC 8 × nseg 12 × nseg 0.75 
BC 0 8 × nlongray 0 

BCUp 0 4 × nlongray 0 

scal 8 × nreg × nangoct 
8 × nreg × nangoct 

+4 × nangoct 
~1.0 

flux 4 × nreg 4 × nreg 1.0 

Sweep (Total) 
12 × nseg 

+8 × nseg × nreg 

+3 × nreg 

(18+ cbuild) × nseg 

+12 × nlongray 

+8 × nangoct × nreg 

+4 × nreg + 4 × nangoct 

0.0 < C.I. < ~0.5 
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For each of the components the FLOP count can be determined exactly by examining the 

respective equations and pseudo-source code. To evaluate Eq. (15) the number of loads for each 

component must be known as required by Eq. (14). In general, determining the number of loads 

is a more difficult problem than determining the number of FLOPs, and in some cases the 

number of loads cannot be determined exactly from the algorithm or source code. For the 3-D 

MOC kernel described in Figure 1, the loads for all components can be determined in a 

straightforward manner except for the build component which has memory access patterns that 

are difficult to generalize. Consequently, the examination reveals that the number of loads should 

be proportional to the number of segments, thus a problem dependent constant, cbuild, is assumed. 

This coefficient can be determined empirically with good accuracy and we conjecture it should 

be valid over a wide range of problems that exhibit similar modularity of their geometry. 

3.4 Extension of Performance Model for Parallel Overhead 

To properly account for the execution time of the parallel kernel an expression for the 

communication time must be developed and applied to the exact communication patterns used in 

the implementation. The equation that describes the time for point-to-point communication, 

where N is the message size is: 

 NT networknetworkcomm   . (17) 

The algorithm in Figure 1 also includes a reduction operation in angle. This is implemented 

with an MPI_Allreduce. Several all reduce algorithms may be available in an MPI 

implementation, and each has their own execution time model. The details of which can be found 

in open literature [10]. Lastly, the overhead from the shared memory parallelism implemented 

with OpenMP is simply a linear combination of the OpenMP library functions used by the 

kernel. The actual execution times of the OpenMP library functions can be obtained from readily 

available micro-benchmarks [11]. Adding the terms for the parallel overhead and accounting for 

the reduction in operations from the parallel decomposition, modifies (15) and (16) to yield the 

following equations for the FLOPs and execution time of the parallel 3-D MOC kernel. 
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Note here that the last two terms of Eq. (19) account for the parallel overhead. with p giving the 

number of domains or processors used for each decomposition. The expressions for the TOMP, 

Tang, and Tspace are: 
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In Eq. (21) γ is the computation cost per byte transferred since the reduction operation naturally 

performs some operation, and in our case it is a summation.  

4 PERFORMANCE MODEL ANALYSIS 

4.1 Theoretical Bounds of the 3-D MOC Kernel Performance 

The theoretical upper and lower bounds of the performance model are essentially 

determined by the possible upper and lower bounds of the cache misses. Similarly other 

evaluations can be investigated by artificially changing the value of the number of misses; for 

example, the effect of cache evictions could be modeled by assuming they occur at some 

frequency. The cache misses are the primary factor that may change based on implementation of 

the exact algorithm described. The two extremes to consider for the cache miss bounds are: every 

access is a miss or every access is a hit. The latter is analogous to assuming an infinitely large L1 

cache that is fully associative. One could argue that the absolute lower bound is actually to 

assume zero for all memory access times, but this assumption results in a non-latency based 

performance model, and is not particularly useful to analyze.  

4.1.1 Comparison to numerical experiment 

To verify that the performance model is reflective of reality, the kernel was instrumented and 

measured using PAPI [12]. The values for each component in the model given in Table II was 

verified against measurement and the overall execution time model in serial and parallel was also 

verified [5]. The test platforms used for experimental comparison were Titan [8] and a Linux 

workstation, that has four AMD Opteron
™

 6238 hex-core processors. Four test cases involving 

varying discretizations based on a small cluster of pins were examined to insure that the correct 

characterization of the problem dimension parameters was performed. Table III shows the 

comparison of the component predicted run-times for the model versus experiment. The 

agreement is generally quite good with only a relative difference within 10%. 

Table III. Comparison of measured and computed execution times 

Case 
Measured 

Execution Time (s) 
Predicted 

Execution Time (s) 
Relative Difference 

Default 1.2991 1.2029 -7.41% 

Fine Angle 2.0150 1.8663 -7.38% 

Fine Rays 3.8637 4.0357 +4.45& 

Fine Space 1.7228 1.6902 -1.89% 
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Table IV shows the measured performance for the kernel and estimated upper and lower 

bounds. The measured performance is within the estimated upper and lower bounds, therefore 

providing further data to support the validity of the model for predicting the performance of the 

kernel as a function of the problem size and machine hardware characteristics. 

 

Table IV. 3-D MOC kernel performance in serial on Sunspear 

Case 
Measured 

(MFLOPS) 
Lower Bound 

(MFLOPS) 
Upper Bound 

(MFLOPS) 
Realized Fraction of 

Upper Bound 

Default 466.4 0.467 897.0 52.0% 

Fine Angle 464.6 0.469 897.0 51.8% 

Fine Rays 441.7 0.468 896.2 49.3& 

Fine Space 485.2 0.166 904.1 53.7% 

 

It is observed that only ~50% of the theoretical upper bound is realized, which suggests that 

some improvements may be possible to further reduce the cache misses. The theoretical peak 

performance of one core on the Linux cluster is 10.4 GFLOPS, which means that the initial 

performance of the kernel is getting roughly 4.5% of this peak. 

The upper bound on the kernel performance neglects all cache misses and only counts L1 

accesses. The upper bounds in Table IV used execution times based on 1 FLOP/cycle and 1 

load/cycle; the ~900 MFLOPS predicted as the upper bound on performance is approximately 

9% of the processor’s theoretical peak. If Eq. (14) is simplified to only include the time for loads 

to the registers, then it can reduced to: 

 















F

L

t
FtT

f

f
11


. (23) 

Eq. (23) provides some insight into the maximum possible performance expected from the 

MOC kernel. For the 9% of peak performance estimated for the MOC kernel the α1/tf factor is 

1.0. To achieve at least half of the peak performance, an algorithm would need an L/F ratio of 

1.0. From data in Table II, it is estimated that the L/F ratio for the kernel is at least 2.0. With this 

value, the maximum fraction of the peak performance achievable would only be 33%. In 

actuality the L/F of the problems tested is probably closer to 9.0, implying that the observed 

computational intensity of the kernel is quite low at ~0.10. This also suggests some possible 

improvement to the kernel through reducing the L/F ratio. Through further analysis of Eq. (23), it 

can be deduced that an architecture that gives better performance would mean that the machine 

balance, α1/tf, would need to be less than 1.0. Unfortunately, for the assumed target architecture, 

this is never the case, and does not appear to be the case for any near term architectures. 

4.2 Kernel Sensitivity to Intra-Node Architecture 

The first sensitivity examined is the model’s sensitivity to tf and α1 and levels of cache, κ; all 

of which apply to the serial algorithm. Instead of using the overly-simplistic theoretical upper or 

lower bounds for cache misses, the observed cache misses from the default test case are used. 

For this case, M1 was 8.43% of the loads and M2 was 0.07% of the loads. To simplify the analysis 
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M1=8.5% is assumed. All other levels of cache assume a miss ratio of Mj = 0.01×Mj-1. Finally 

αmem is assumed to be 1000 ns. 

The predicted performance for each case is shown as a contour plots in figures 3 through 6 

for the different values of κ. The cache latencies for levels of cache are assumed where the access 

latency for each level αj = 10αj-1 for j > 1. 

The data in Figure 3 is consistent with the theoretical upper bound (zero cache misses) of 

performance for the 3-D MOC kernel. Several lines are overlaid on the contours to show when 

the performance becomes more sensitive to a particular hardware property. The region above the 

magenta line describes an architecture in which the time per flop is at least 4x faster than the 

time for a memory access. In this region it is observed that the performance is more sensitive to 

the average memory access time, and the performance of the kernel will be limited by this 

hardware characteristic. The other line (blue) in Figure 3 describes when the time per flop and L1 

cache access time are equivalent. The region below this line is indicative of an architecture in 

which the cache access time is faster than the time per flop, which is generally not the type of 

architecture that is manufactured. However, for an architecture of this type the performance 

would be dictated by the time per flop. The region between the two lines is fairly indicative of 

most commodity architectures, and in this region the performance is generally more sensitive to 

cache access time compared to the time per flop. The magenta and cyan regions denote where the 

hardware characteristics of test machines used in this work were measured. 

 

Figure 3.  Sensitivity of peak performance to 

α1 and tf 

 

Figure 4.  Sensitivity of performance to α1 and tf for 

single-level cache 

 

In Figure 4 the performance does not really change with either hardware property, and 

instead is limited by the 1 μs access time to retrieve data form main memory. Figure 5 shows the 

performance sensitivity for an architecture with a two level cache. Here the performance is still 

severely limited by the access time to main memory compared to the peak performance of Figure 

3. However, there is some sensitivity to the time per flop and the cache access latency. The 

sensitivities for the two level cache basically behave in a similar manner as peak performance 

case, although the magnitude of these sensitivities is reduced considerably. 
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Figure 5.  Sensitivity of performance to α1 and tf for 

two-level cache 

 

Figure 6.  Sensitivity of performance to α1 and tf for 

three-level cache 

With the three level cache architecture shown in Figure 6, the performance sensitivity to the 

hardware properties is very similar to that observed in Figure 3. However, for a given (tf,α1) pair, 

the predicted performance in Figure 6 is approximately half of Figure 3, which is consistent with 

Table III. This would indicate that, assuming the cache misses are reduced by a factor of 100 at 

each level and the memory access times are increased by only a factor of 10, then this becomes a 

very good architecture for achieving behavior similar to the peak performance of the algorithm. 

Although it is not shown, the case of an architecture with a four level cache was also investigated 

and it was observed to have almost exactly the same performance as the architecture with three 

cache levels. 

4.3 Kernel Sensitivity to Inter-Node Architecture 

First, the effect of the network latency and bandwidth on the spatial decomposition overhead 

is examined, specifically the Tspace term of Eq (20). In Figure 7 this function is plotted against the 

bandwidth and latency of the network hardware. The measured range of latency and bandwidth 

for the test machine, Titan, is highlighted by the magenta rectangle. 

As the bandwidth limits to large numbers and the latency limits to 0, Tspace asymptotically 

approaches the reduced TBCUp time. The contours of Figure 7 show that Tspace approaches this 

asymptote rather quickly. Furthermore, very little reduction in the overhead is obtained once the 

bandwidth exceeds 10 MB/s and the latency is less than 10 μs. This suggests that efforts to 

improve the performance of the network architecture would have little benefit in reducing the 

overhead of the spatial decomposition, and that the performance of the network hardware on 

Titan is already near optimal for this algorithm. 

Next, for the angular decomposition, the sensitivity of the overhead is evaluated against the 

network hardware characteristics, and the problem size and number of domains. These 

sensitivities are highly dependent on the MPI_Allreduce algorithm, represented by Eq. (21), but 

independent of the rest of the kernel. The sensitivities to the network hardware are shown in 

Figure 8, and the measured network hardware latency and bandwidth are indicated by a magenta 

box in each figure. The overhead is observed to be largely a function of the network bandwidth 
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and, the magnitude of the overhead is about 1000x times higher for the angular decomposition 

compared to the spatial decomposition. Additionally, any increase in bandwidth above 100 MB/s 

provides little benefit to reducing the angle decomposition overhead. 

 

Figure 7.  Sensitivity of the spatial decomposition 

overhead to network hardware characteristics 

 

Figure 8.  Sensitivity of angle 

decomposition overhead to network hardware 

characteristics 

4.4 Parallel Performance 

The parallel performance model was then evaluated to predict the scalability of the 

algorithm. The basic hardware characteristics of Titan were used, and the assumed problem for 

the analysis was an idealized quarter core PWR that uses pin-wise spatial decomposition and a 

pin-wise discretization that is consistent with the performance test problems studied in Section 

4.1. As shown in Figure 10 the model predicts that parallel efficiencies greater than 90% can be 

achieved out to nearly 30 million processors by using only space and angle decomposition. 

However, it is unlikely this performance could be observed in practice because the model 

assumes the hardware and run time system will scale to this many cores, which has yet to be 

demonstrated. The current intra-node architecture is likely to change considerably in the next 

generation of leadership class architectures. 

Also as indicated in Figure 10, the rate of decrease in parallel efficiency is faster for space-

ray decomposition than it is for space-angle decomposition. Therefore, in order to maximize the 

parallel efficiency it is essential to maximize the spatial decomposition. If more processors are 

available, then it is recommended to use the angular decomposition to add a factor of 2 to 8 

additional domains. However, if the spatial domain is not maximized, perhaps because of poor 

load balancing or an insufficient number of processors for the next level of spatial 

decomposition, then it is better to add more processors through ray decomposition rather than 

angle decomposition. This analysis assumed perfect load balancing in the decomposition. 

However, in practice this is not always possible and using decompositions with a poor load 

balance will negatively affect the parallel efficiency much more than the estimate in this 

parametric study. 
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Figure 10.  Estimated strong scaling efficiency for PWR 1/4 core 

 

5 CONCLUSIONS AND FUTURE WORK 

This paper presented a conceptual model of the target architecture and the basic equations 

for a latency based performance model. Expressions for the FLOP and load counts of the 3-D 

MOC kernel were developed in terms of key problem size parameters. This performance model 

was then extended to the parallel algorithm. The performance model was verified for a specific 

machine whose architecture fits within the conceptual model using four small problems with 

representative meshing. The FLOP counts are exact, while the load counts and execution time 

may have uncertainties of up to 10%.  

The baseline performance of the serial kernel was then given, and the measured performance 

was shown (4.5% machine peak) in comparison to the model performance bounds (9% of 

machine peak). A parametric study of the performance as a function of the hardware properties 

was presented to indicate the types of architectures that are likely to get the best performance, 

and which properties have the greatest influence on performance. The overhead for the spatial 

and angular decomposition were examined separately with respect to the network’s latency and 

bandwidth. Both types of decomposition were shown to be relatively insensitive to the network 

latency, provided the network bandwidth was at least 100 MB/s. Additionally, further increasing 

the network bandwidth beyond 100 MB/s or reducing the network latency below 0.1 ms would 

provide little improvement in performance. Since many modern high performance compute 

clusters already have networks with a higher bandwidth and lower latency, it may be concluded 

that these types of decompositions will continue to perform well on future network architectures.  

Finally, the parallel performance model for the strong scaling efficiency was evaluated for 

various decompositions, assuming problem size of the order of a quarter core PWR. The parallel 

performance model estimates that up to 30 million processors can be used while still maintaining 

efficiency greater than 90%, provided the hardware and run-time system scale. Future work will 

focus on evaluating different algorithms that have better serial performance and alternate 

implementations that realize a higher fraction of the theoretical peak of the algorithm. 
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