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ABSTRACT

Solution transfer operators constructed from a moving least square basis have recently been
researched for multiphysics simulations of pressurized water reactors. Useful for solution transfer
between surfaces and volumes, moving least square schemes are attractive because they do not require a
computational mesh but instead use a point cloud representation of the discretized domain. In addition,
they are often able to achieve a very accurate and conservative solution reconstruction and are readily
parallelized to scale on leadership class computing facilities. When studying the moving least square
technique, we discovered that when the algorithm was applied to solution transfers on a spacer grid
surface, numerical instabilities in the singular value decomposition algorithm used to generate the moving
least square basis resulted in large errors after a few solution transfer iterations, rendering the method
unusable in many situations. In this work we assess these instabilities and show that using a truncated
singular value decomposition and simply augmenting the threshold in the algorithm does not alleviate
the instabilities without introducing additional error into the solution transfer and adding an additional
free parameter to the algorithm. We then modify the moving least square algorithm to ensure that the
terms of the spatial polynomials used to construct the least square problem are linearly independent,
resulting in a full rank linear system which can be used to calculate an optimal truncation threshold. We
show that the new algorithm significantly improves the stability of repeated solution transfers on the
spacer grid surface.

Key Words: solution transfer, multiphysics, moving least square, singular value decomposition,
spacer grid

1 INTRODUCTION

Solution transfer algorithms are a fundamental requirement for multiphysics simulations where
different computational grids and numerics are used for each physics involved. For solution transfer
of nodal fields between physics modules, several methods are used in practice when a mesh is
available including basic interpolation as well as weighted residual schemes which are available in
both conservative and accurate formulations [1, 2]. As an alternative to methods that leverage the
meshes discretizing a shared interface or domain, significant work has been performed in recent
years primarily in the aerospace community on mesh-free techniques that instead apply the solution
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transfer between sets of point clouds that represent the discrete interface [3–9]. In these methods,
one removes the functional support provided by the grid and underlying physics discretization
and replaces it with support of a higher order constructed from various basis functions. Often,
compactly supported radial basis functions are used to provide this support and only require the
nearest neighbors of a given node in its local spatial neighborhood.

Of the available mesh-free algorithms, the moving least square reconstruction algorithm first
presented in the context of multiphysics solution transfer in [4] is particularly attractive because
it is both accurate and fully decouples each node in the grid, offering a straight forward path to
parallelization. In the literature, moving least square algorithms are used most often for solution
transfers on grids with curved surfaces. However, many components of a light water reactor
geometry do not have curved surfaces and, as indicated by [4], these flat surfaces may result in node
configurations that lead to ill-conditioned or potentially singular least square problems. We found
this to be the case when applying the algorithm to two different meshes discretizing the surface
of a spacer grid with numerical instabilities in the solution scheme resulting in large errors after a
few iterations. A spacer grid is an important and complex geometry in many reactor applications
including coupling between fluid dynamics and heat transfer. In this application, solution transfer
algorithms are used to reconstruct temperatures and heat fluxes on the surface of the spacer grid
which serves as a boundary between the fluid domain and solid domain. In this paper, we assess the
solution of the least square problem for these spacer grid discretizations and provide a modified
solution scheme that is demonstrated to yield a more stable solution transfer operator than the
originally published algorithm.

In this paper we first describe the moving least square reconstruction algorithm and define the
solution transfer operator. Next, we use the operator to perform solution transfer on a spacer grid
geometry where we show that computing a truncated singular value decomposition (SVD) to solve
the least square problems that construct the operator basis can alleviate the instabilities at the cost of
additional error in the solution transfer as well as giving an additional free parameter to the user. In
particular, we show that large errors arise on the spacer grid surface when the singular values are not
handled correctly. We then eliminate the need for selection of a truncation parameter and present
an algorithm that poses the moving least square problem using a full rank but potentially lower
order spatial polynomial matrix to build the moving least square basis. This not only improves the
robustness of the algorithm but also automatically computes an optimal truncation parameter for
each individual node in the system. Using the modified algorithm we repeat the calculations with
our results indicating that the stability of the algorithm is improved. Finally, we conclude the paper
with a summary of our results and indicate future work.

2 MOVING LEAST SQUARE RECONSTRUCTION ALGORITHM

In this section we present the original moving least square reconstruction technique. First, we
define the solution transfer problem in terms of functions supported on a point cloud and define the
solution transfer operator. Next, we briefly introduce the compactly supported radial basis functions
used in the moving least square reconstruction. Finally, we define the moving least square solution
transfer operator by building a basis from solutions to least square problems.
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2.1 Solution Transfer Problem

The solution transfer problem is defined as the reconstruction of a function represented by
a discretization on one grid to a representation on a potentially different grid with a different
discretization. The grid on which the function is initially represented is defined as the source
grid and the grid onto which the function will be transferred is defined as the target grid. In its
representation on the source grid, the function will be defined as, f , the source function. The
representation of the function on the target grid will be, g, the target function. We define the source
function over M nodes or control points as:

fi = f(si) , (1)

where fi is the source function evaluated at the ith control point in the source grid, si. Equivalently,
we have the target function defined over N control points as:

gi = g(ti) . (2)

where gi is the target function evaluated at the ith control point in the target grid. We then define a
solution transfer operator, H, such that g = Hf .

2.2 Compactly Supported Radial Basis Functions

Mesh-free methods for solution transfer do not consider the discretization of fields when
constructing the interpolant. Instead, the domain is represented by arbitrary point clouds with
topology-independent functional support. Radial basis functions permit the construction of func-
tional support in arbitrary point clouds by using the Euclidean distance, d, between a point, i, and
any one of its supporting points, j:

d = ||xi − xj||2 , (3)

where xi and xj are the physical coordinates of the points i and j respectively. Compact radial basis
functions are desirable for large interpolation problems because of the sparsity they introduce into
the problem by requiring only a subset of the control points in the coupling domain to construct
support as shown in Figure 1a. As an example, consider Wendland’s C2 function, part of a broader
family of functions shown in Figure 1b:

φ(d) =

(
1− d

ρ

)4

+

(
4
d

ρ
+ 1

)
(4)

where ρ is the physical support radius of the function and the (·)+ notation on the first term indicates
that term evaluates to zero if (1− d/ρ) < 0, thus truncating support at the boundary of the physical
support radius. The choice of ρ will dictate how many control points are used for support with more
points typically providing a smoother interpolation. We refer the reader to [10] for more details and
examples of these functions.
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(a) Radial basis functions are supported
by the local neighborhood of nodes
within a radius ρ.

(b) Wendland radial basis family. Functions of varying smooth-
ness are available with C0, C2, C4 and C6 shown here.

Figure 1. Compactly supported radial basis functions build an interpolant with localized
support.

2.3 Moving Least Square Solution Transfer Operator

Quaranta, Masarati, and Mantegazza presented a function reconstruction technique for arbitrary
point clouds based on a moving least square discretization [4]. In this method, support and
subsequently the solution transfer operator is constructed through solutions to local least square
kernels defined by compactly supported radial basis functions. First, the solution at each target
point is formulated as a polynomial sum:

gi =
n∑
i=1

pi(ti)ai(ti) , (5)

where the ai(ti) are polynomial coefficients and pi(ti) are quadratic polynomials in terms of spatial
coordinates. In vector form for an arbitrary three-dimensional point, q, these polynomials are:

p(q) =
[
1 xq yq zq xqyq xqzq yqzq x2

q y2
q z2

q

]T
. (6)

We can create the interpolant by minimizing the solution transfer residual through a weighted least
square procedure at each individual target point, ti:

minimize
ai(ti)

∂

∂ai(ti)

∫
Ω

φ(ti − s)(g − f)2dΩ(s) , (7)

where the ai(ti) serve as the free parameters in the minimization for which we are solving, Ω(s) is
the domain of interest specifically defined by the supporting source control points, and compactly
supported radial basis functions defined at the target control point and supported by the source
control points, φ(ti − s), serve as the weights in the minimization. To close the problem, Eq (5)
provides a natural constraint for the minimization procedure. Solving the minimization problem
gives the following kernel to be evaluated at each target control point ∗:

ξ(ti) = p(ti)
T
[
P(sti)

TΦ(sti)P(sti)
]−1

P(sti)
TΦ(sti) , (8)

∗See [4] for a derivation of this kernel.
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with sti the set of n source points within the support radius of the ith target point, ti. The polynomial
component is defined as a Vandermonde matrix:

P(sti) =


p(st1)
p(st2)
· · ·

p(stn)

 =


1 xst1 yst1 zst1 xst1yst1 xst1zst1 yst1zst1 x2

st1
y2
st1

z2
st1

1 xst2 yst2 zst2 xst2yst2 xst2zst2 yst2zst2 x2
st2

y2
st2

z2
st2...

...
...

...
...

...
...

...
...

...
1 xstn ystn zstn xstnystn xstnzstn ystnzstn x2

stn
y2
stn

z2
stn

 ,

(9)
and the basis component a diagonal matrix:

Φ(sti) =



φst1 ti 0 · · · 0

0 φst2 ti · · · 0

· · · · · · . . . · · ·

0 0 · · · φstn ti


. (10)

We can then reconstruct the target function through independent evaluations of the moving least
square kernel in Eq (8) at each target control point. Alternatively, we can store the solutions to the
kernels as a matrix to form the solution transfer operator:

Hij = ξ(ti)j, ⇐⇒ sj ∈ sti , (11)

where i is the index of the target control point and j the index of the source control point providing
support within the radius of ti.

3 TRUNCATED SINGULAR VALUE DECOMPOSITION

The entries of the solution transfer operator H are explicitly constructed through the solution of
local least square problems defined by Eq (8). To construct these problems, we use a radius search
to build the set of source control points supporting each target control point, sti . We formulate
each kernel as a small, dense linear algebra problem and utilize LAPACK and BLAS routines for
manipulating the resulting matrices [11]. To construct the kernel in Eq (8), we solve the linear
system

AX = B , (12)

with:
A = P(sti)

TΦ(sti)P(sti) , (13)

the operator,
B = P(sti)

TΦ(sti) , (14)

a matrix of right hand side vectors and,

X =
[
P(sti)

TΦ(sti)P(sti)
]−1

P(sti)
TΦ(sti) , (15)
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the matrix of solution vectors. The kernel for the ith target center, ti, is then:

ξ(ti) = p(ti)
TX . (16)

In the aerospace literature, solving Eq (12) is almost trivial for curved airfoil grids, requiring
either an LU or QR decomposition scheme. However, as mentioned previously, flat surfaces and
sharp edges on the spacer grid pose an issue with rank deficiency arising in the matrix of spatial
polynomials in Eq (9). This occurs because one or two dimensions of space are effectively lost
for constructing the coefficients of the polynomial. Because of this, to solve Eq (12) we use a
singular value decomposition as a means of producing a factorization of the operator which reveals
information about the rank of the system.

The singular value decomposition of a matrix A ∈ Rm×n is defined as:

UTAV = Σ , (17)

where UT ∈ Rm×m and V ∈ Rn×n and Σ ∈ Rm×n contains the singular values of A. We can then
find a minimum norm solution of Eq (12) by computing:

xi =

rank(A)∑
i=1

uTi bi
σii

vi , (18)

where (·)i indicates the ith column of the given matrix, σii the ith singular value, and the rank of A
can usually be inferred from the singular values. However, it is not always trivial to determine this
rank, especially when the operator in Eq (9) does not specify a fully orthogonal basis. In this case
we choose to compute the pseudoinverse of A:

X = A+B . (19)

To build the pseudoinverse, we use a truncated SVD procedure where a parameter ε is selected so
that singular values that satisfy σi < εσmax are ignored in the computation of the minimum norm
solution in Eq (18). Per [12], a good choice for the truncation is ε = 1

κ(A)
as the condition number

of A provides a measure for the number of correct digits in our factorization. However, for rank
deficient cases estimation of κ(A) may not be possible if A is singular and an LU factorization is
not available. Therefore, when using the original moving least square algorithm, we simply choose
a value of ε to be used for the solution of Eq (12) at each target point. We refer the reader to [12]
and [11] for more details on computing the truncated singular value decomposition and condition
estimates of matrices.

To demonstrate the effectiveness of the truncated singular value decomposition, we apply the
moving least square scheme to a 3 × 3 spacer grid geometry with mixing vanes. We used the
triangular surface mesh from a coarse and fine linear tetrahedral discretization of the geometry as
shown in Figure 2. Although these grids were selected arbitrarily, the numerical issues addressed in
this work were found to occur when several different grid variations were used including those with
linear hexahedral elements. To given an idea of the size of the solution transfer problem, grid A
contains 10,973 nodes on the surface while grid B contains 94,621 nodes.
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(a) Spacer grid mesh A. (b) Spacer grid mesh B.

Figure 2. Coarse mesh and fine mesh of 3 × 3 spacer grid geometry. Both meshes are com-
posed of linear tetrahedrons.

In the absence of physics, it is common to study solution transfer operators by repeatedly
applying them to a known function iteratively between two grids, in this case grids A and B, and
observe how the operators perturb the function. For our tests we define the following simple linear
function on the surface nodes of grid A that should be easily reconstructed by the algorithm in order
to expose errors in the moving least square operator:

u(x) = 1.0 + |x|+ |y|+ |z| . (20)

We then apply the first solution transfer operator to move the function to the surface nodes of grid B
and then apply the second operator to move the function back to the surface of grid A. After each
iteration, accuracy of the solution transfer will be measured by ||e||2/||u||2 where the error at a
node, xi, is:

ei = f(xi)− u(xi) . (21)

We applied the transfer operators in 100 iterations between grids A and B for ε = εmachine =
2.22045× 10−16, 1× 10−14, 1× 10−12, 1× 10−8, and 1× 10−4 to capture the case of the original
algorithm without truncation and then varying values of truncation using an implementation of the
moving least square algorithm in the DataTransferKit library [13]. Figure 3 gives the error as a
function of iteration for these calculations. For the case without truncation (ε = εmach), numerical
instabilities cause an immediate and unbounded rise in error resulting from linear dependencies
amongst nodes in the grid creating singular values near machine precision. Adding truncation
stabilizes the iteration sequence at the cost of adding more error to the computation. As truncation
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is increased, more information is thrown away from the least square problems yielding more error
in the solution transfer. Based on these results, it is clear that the singular values play an important
role in the accuracy and stability of the solution transfer. However, user selection of truncation is
not ideal as it is not known a priori whether the parameter will provide the desired accuracy.

0 20 40 60 80 100
Iteration

1×10
-8

1×10
-6

1×10
-4

1×10
-2

1×10
0

A
cc

u
ra

cy
 E

rr
o

r

Machine Precision
1.0E-14
1.0E-12
1.0E-8
1.0e-4

Figure 3. Effect of SVD truncation parameter on solution transfer accuracy. The accuracy
is extremely sensitive to the chosen truncation parameter.

4 MODIFIED ALGORITHM

To improve the moving least square algorithm we focus on two deficiencies indicated by the
analysis in the previous section. First, we were led to use the singular value decomposition as a
solution scheme for building the moving least square kernel because we could not guarantee a
full rank linear system for arbitrary discretizations of the spacer grid. We will first address rank
deficiency by building a full rank approximation to the least square problem. Second, with a full
rank system, it is viable to use an LU factorization to estimate a more optimal truncation parameter.

Full Rank Vandermonde Matrix Rank deficiency in the operator A is caused by lack of an
orthogonal basis defined by P(sti) and not Φ(sti). Considering that Φ(sti) will always have non-
zero elements on the diagonal due to all support points being within the radius of the target point of
interest, it will always scale A and never introduce zero rows. To create a full rank variant of A,
we must then always ensure that P(sti) for a given target point is of full rank. We do this with the
following procedure to ensure an orthogonal basis:

1. Add each coefficient in Eq (6) column-by-column starting with the linear terms to approximate
P(sti) ≈ P̂(sti)
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2. For each column added, compute an SVD of the current approximation: UT P̂(sti)V = Σ

3. If any σii in Σ is less than εmachσmax, discard the newest column of P̂(sti) and move on to
the next polynomial coefficient column

For this work we limit ourselves to the coefficients available in the quadratic spatial polynomial
defined in Eq (6). However, there is no reason the order could not be increased to cubic or larger.
This means that we have the potential to generate a reduced order polynomial for those points in
which we have rank deficiency. For example, if all supporting points have spatial coordinates with
z = 1, the resulting Vandermonde matrix approximation would be:

P̂(sti) =


1 xst1 yst1 xst1yst1 x2

st1
y2
st1

1 xst2 yst2 xst2yst2 x2
st2

y2
st2...

...
...

...
...

...
1 xstn ystn xstnystn x2

stn
y2
stn

 . (22)

Once a P̂(sti) has been computed, it is used instead of P(sti) for the remainder of the least square
algorithm with the new basis:

ξ̂(ti) = p̂(ti)
T
[
P̂(sti)

TΦ(sti)P̂(sti)
]+

P̂(sti)
TΦ(sti) , (23)

using the pseudoinverse of Â = P̂(sti)
TΦ(sti)P̂(sti).

Optimal Truncation Parameter With Â now defined to within at least some tolerance to be a full
rank system, we can additionally estimate the condition number of Â via an LU factorization and
then use an implementation of the condition estimation algorithm in [12] as provided in LAPACK.
This condition estimation is performed for the matrix Â constructed at each target point after the
full rank system has been generated to give a new truncation parameter ε = 1

κ(Â)
.

5 MODIFIED ALGORITHM RESULTS

Using the same iterative analysis to test the truncated SVD algorithm, we apply our new
modified algorithm to the spacer grid problem using both the orthogonal polynomial basis as well
as the orthogonal basis in tandem with an optimal truncation parameter computed via a condition
estimate of the system. Iterative results for the new algorithm and the original algorithm without
truncation are given in Figure 4. These results indicate that a combination of both a full rank
polynomial matrix as well as an optimal truncation parameter are required in order to ensure
long-term stability of the solution transfer. Because a small but arbitrary parameter of εmach was
used to compute the rank of the approximate Vandermonde matrix, additional truncation is needed
in the SVD solution to ensure accurate results for very ill-conditioned problems. This also indicates
that a simpler solution scheme such as an LU or QR factorization could not in general be used to
solve the most ill-conditioned of problems even with the orthogonal set of spatial polynomials. In
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addition, we note that we achieve a similar accuracy error after 100 iterations with the new modified
algorithm as we did with ε = 1× 10−14 shown in Figure 3 without an ad hoc choice of truncation
parameter.
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Figure 4. Solution transfer accuracy error vs. iteration. The modified algorithm without
truncation improves the stability of the original algorithm but still exhibits a large error
component. Adding an optimal truncation parameter eliminates this extra error component.

In Figure 5, we have additionally plotted the original function and then the original algorithm
and both variants of the modified algorithm after 100 iterations. While the modified algorithm with
optimal truncation respects the bounds of the original function, the modified algorithm without
truncation shows errors on the surface of some mixing vanes, indicating that the least square
problems at these points were particularly ill-conditioned because they were near sharp features of
the grid. The original algorithm error grows unbounded if no truncation is applied resulting in loss
of all accuracy in the solution transfer after O(10) iterations.

6 CONCLUSIONS

In this paper we have developed a modified moving least square reconstruction algorithm
for solution transfer in multiphysics applications. For solution transfer on the surface of a spacer
grid, certain mesh node configurations were found to result in ill-conditioned or possibly singular
weighted least square problems. We discovered that when using a singular value decomposition
to solve these problems, the selection of which singular values to truncate gave varying results for
accuracy and stability. To eliminate this selection, we modified the algorithm to first build a fully
orthogonal but potentially reduced order set of spatial polynomials and then used this new system
to automatically compute an optimal truncation parameter for each node of the mesh, ultimately
resulting in a more accurate and stable algorithm. In future work, we would like to expand the
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algorithm to use spatial polynomials of cubic order or higher and study its effects on the accuracy
and performance of the solution transfer.

(a) Original function. (b) Original algorithm.

(c) Modified algorithm without truncation. (d) Modified algorithm with optimal truncation.

Figure 5. Solutions on the fine grid after 100 transfer iterations. The scale of (a), (c), and (d)
are true to the solution while the scale of (b) is fixed to the scale of the original function to
show the violation of the solution minima and maxima. Note the solution error in (c) on the
mixing vane surface, an example of errors near sharp features.
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