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ABSTRACT 

The MPACT code being developed collaboratively by Oak Ridge National Laboratory and the 

University of Michigan is the primary neutron transport solver within the Virtual Environment for 

Reactor Applications Core Simulator (VERA-CS).  The 2D/1D scheme is the most commonly 

used method for solving three-dimensional problems.  Several axial solvers in this scheme assume 

isotropic transverse leakages, but work with the axial SN solver has extended these leakages to 

include both polar and azimuthal dependence.  However, explicit angular representation can be 

burdensome, both in terms of run time and memory requirements.  The work here alleviates this 

burden by assuming the azimuthal dependence of the angular flux and transverse leakages are 

represented by the Fourier series expansion.  At the heart of this is a new axial SN solver that takes 

in a Fourier expanded radial transverse leakage and generates the angular fluxes used to construct 

the axial transverse leakages used in the 2D-MOC calculations.  

These new capabilities are demonstrated for the rodded Takeda LWR benchmark problem and 

the rodded B configuration of the extended C5G7 benchmark suite.  Results with heterogeneous 

pins, as in the C5G7 benchmark, indicate that cancellation of error between the angular and spatial 

representation of the transverse leakages may be a factor.  To test this, an alternative C5G7 

problem has been formulated using homogenized pin cells to reduce the errors introduced by 

assuming the axial transverse leakage is spatially flat.  In both the Takeda and C5G7 problems 

with homogeneous pins, excellent agreement is observed at fraction of the runtime and 

signification reductions in memory footprint. 

Key Words: azimuthal, Fourier, transverse leakage, 2D/1D, MPACT 

1  INTRODUCTION 

The Consortium for Advanced Simulation of Light Water Reactors (CASL) [1] is 

developing the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) [2] 

which provides multiphysics simulation capabilities for nuclear reactor cores.  The primary 

neutron transport solver of VERA-CS is the MPACT code [3], being developed collaboratively 

by Oak Ridge National Laboratory (ORNL) and the University of Michigan (UM) and employs 

the 2D/1D method to solve 3D neutron transport problems [4, 5].  A common approximation 

used in production level calculations is to assume that the axial and radial transverse leakages 
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that couple the radial and axial solvers are isotropic.  Explicitly representing the angular 

dependence can be particularly burdensome, both in terms of run time and memory footprint.  

The work presented here investigates the effect of approximating the azimuthal dependence 

using a Fourier series, including the development of a new axial solver that can properly handle 

the Fourier moment-based components.  

The 2D/1D method with pin-homogenized axial transport and explicit angular dependence 

of the leakages is very similar to initial work with the “2D/1D Fusion” code CRX at KAIST [6].  

Eventually, CRX was modified to perform axial transport on the fine mesh basis, but it was 

remarked that the memory requirements increased significantly [7].  While the work here focuses 

on pin-homogenized transport, the approach of using a Fourier expansion to approximate the 

azimuthal dependence is likely extendable to fine mesh axial transport as well, which would 

alleviate the memory burden considerably.   

Work with a pin-homogenized axial SN solver in DeCART by Hursin [8, 9] also provided 

motivation for this work.  Hursin investigated incorporating polar dependence into the transverse 

leakages, by using an azimuthally-integrated variant.  Results comparing the NEM and axial SN 

solver with these azimuthally-integrated leakages showed promise, indicating that incorporating 

full angular dependence would be worthwhile. 

2 BACKGROUND 

2.1 2D/1D 

The 2D/1D method is a scheme for solving 3D neutron transport problems by decomposing 

the geometry into an axial stack of radial planes [4, 5, 10, 11].  In MPACT, 2D-MOC is typically 

used to solve each radial plane and 1D, pin-homogenized nodal methods are used axially.  

Historically, diffusion-based solvers (NEM and SENM) have been used [8, 10].  More recently, 

however, simplified PN (SPN) axial solvers have become more standard [5, 11].  This section 

briefly describes the underlying equations of the radial and axial solvers, as well as identifies 

some of the approximations that are typical.     

2.1.1 Radial equations 

To derive the equations for the radial solvers, in which 2D-MOC is employed, the 3D-

transport equation is averaged axially, as in Eq. 1: 

𝜑𝑔,𝑙
𝑍 (𝑥, 𝑦) =

1

ℎ𝑧
∫ 𝜑𝑔,𝑙(𝑥, 𝑦, 𝑧)𝑑𝑧

𝑧𝑇

𝑧𝐵

. (1) 

where the axial component of the streaming operator is moved to the right hand side as the axial 

transverse leakage: 

√1 − 𝜇𝑙
2 (cos(𝛼𝑙)

𝜕

𝜕𝑥
+ sin(𝛼𝑙)

𝜕

𝜕𝑦
)𝜑𝑔,𝑙

𝑍 (𝑥, 𝑦) + Σ𝑡,𝑔
𝑍 (𝑥, 𝑦)𝜑𝑔,𝑙

𝑍 (𝑥, 𝑦) = 𝑞̃𝑔,𝑙
𝑍 (𝑥, 𝑦), 

𝑞̃𝑔,𝑙
𝑍 (𝑥, 𝑦) = 𝑞̅𝑔,𝑙

𝑍 (𝑥, 𝑦) + 𝑇𝐿𝑔,𝑙
𝑍 (𝑥, 𝑦). 

(2) 

In the above and following equations, 𝑔 denotes the group index, and 𝑙 denotes the angle index. 

In Eq. 2,  𝑞̅𝑔,𝑙
𝑍 (𝑥, 𝑦) denotes the source contribution from scattering and fission (Eq. 3): 
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𝑞̅𝑔,𝑙
𝑍 (𝑥, 𝑦) =

𝜒𝑔
𝑍(𝑥,𝑦)

4𝜋𝑘eff
∑ 𝜈Σ𝑓,𝑔′

𝑍 (𝑥, 𝑦)𝜙𝑔
𝑍(𝑥, 𝑦)

𝑁𝑔𝑟𝑝

𝑔′=1
+

1

4𝜋
∑ Σ𝑠0,𝑔′→𝑔

𝑍 (𝑥, 𝑦)
𝑁𝑔𝑟𝑝

𝑔′=1
𝜙𝑔′
𝑍 (𝑥, 𝑦),  (3) 

and one can see that the axial transverse leakage in its most explicit form can be constructed 

using the angular fluxes at the top and bottom axial interfaces (Eq. 4): 

 𝑇𝐿𝑔,𝑙
𝑍 (𝑥, 𝑦) =

𝜇𝑙
ℎ𝑧
(𝜑𝐵,𝑔,𝑙(𝑥, 𝑦) − 𝜑𝑇,𝑔,𝑙(𝑥, 𝑦)). (4) 

A simple approximation is to assume that the axial transverse leakage is isotropic, in which 

case it can be constructed using the net currents at the top and bottom interfaces: 

 𝑇𝐿𝑔,𝑙
𝑍 (𝑥, 𝑦) =

𝐽𝐵,𝑔(𝑥, 𝑦) − 𝐽𝑇,𝑔(𝑥, 𝑦)

4𝜋ℎ𝑧
. (5) 

Additionally, since the axial solves in MPACT are performed on a pin-wise basis, it is assumed 

that the axial leakage in each fine mesh region in a pin received the same leakage (the shaped is 

assumed to be flat), where the currents and angular fluxes used to construct the axial leakage are 

averaged radially over each pin (Eqs. 6 and 7): 

 𝑇𝐿𝑔,𝑙
𝑍 (𝑥, 𝑦) =

𝐽𝐵,𝑔
𝑋𝑌 − 𝐽𝑇,𝑔

𝑋𝑌

4𝜋ℎ𝑧
, (6) 

 𝑇𝐿𝑔,𝑙
𝑍 (𝑥, 𝑦) =

𝜇𝑙
ℎ𝑧
(𝜑𝐵,𝑔,𝑙

𝑋𝑌 − 𝜑𝑇,𝑔,𝑙
𝑋𝑌 ). (7) 

2.1.2 Axial equations  

Similarly, the equations for the axial solvers can be obtained by averaging the 3D-transport 

equation radially over both 𝑥 and 𝑦: 

 𝜑𝑔,𝑙
𝑋𝑌(𝑧) =

1

𝐴𝑥𝑦
∫ ∫ 𝜑𝑔,𝑙(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦

𝑥𝑅

𝑥𝐿

𝑦𝑅

𝑦𝐿

. (8) 

where the radial streaming components are moved to the right hand side: 

 
𝜇𝑙
𝑑

𝑑𝑧
𝜑𝑔,𝑙
𝑋𝑌(𝑧) + Σ𝑡,𝑔

𝑋𝑌(𝑧)𝜑𝑔,𝑙
𝑋𝑌(𝑧) = 𝑞̃𝑔,𝑙

𝑋𝑌(𝑧), 

𝑞̃𝑔,𝑙
𝑋𝑌(𝑧) = 𝑞̅𝑔,𝑙

𝑋𝑌(𝑧) + 𝑇𝐿𝑔,𝑙
𝑋𝑌(𝑧). 

(9) 

Eq. 10 shows the radial transverse leakage, which in explicit form is constructed using the 

angular fluxes at the left and right boundaries of each pin cell, as calculated by the radial solver: 

 𝑇𝐿𝑔,𝑙
𝑋𝑌(𝑧) = −

√1 − 𝜇𝑙
2

𝐴𝑥𝑦

(

 
 
 
 cos(𝛼𝑙) ∫ (𝜑𝑔,𝑙(𝑥𝑅 , 𝑦, 𝑧) − 𝜑𝑔,𝑙(𝑥𝐿 , 𝑦, 𝑧)) 𝑑𝑦 

𝑦𝑅

𝑦𝐿

sin(𝛼𝑙) ∫ (𝜑𝑔,𝑙(𝑥, 𝑦𝑅 , 𝑧) − 𝜑𝑔,𝑙(𝑥, 𝑦𝐿 , 𝑧)) 𝑑𝑥 

𝑥𝑅

𝑥𝐿 )

 
 
 
 

. (10) 

As with the axial transverse leakage, the radial leakage can be assumed to be isotropic and can 

then be determined using the radial currents on the pin boundaries: 
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 𝑇𝐿𝑔,𝑙
𝑋𝑌(𝑧) =

1

4𝜋ℎ𝑥
(𝐽𝐿,𝑥,𝑔(𝑧) − 𝐽𝑅,𝑥,𝑔(𝑧)) +

1

4𝜋ℎ𝑥
(𝐽𝐿,𝑦,𝑔(𝑧) − 𝐽𝑅,𝑦,𝑔(𝑧)). (11) 

In Eqs. 6 and 7, the axial transverse leakage is considered to be flat spatially within each 

pin.  However, because the axial mesh is typically much larger than the radial mesh, a quadratic 

leakage interpolation scheme is employed using the leakage values from the upper and lower 

neighbors to construct a more accurate intranodal leakage distribution.  

It should be noted that under the right circumstances, the source terms in Eqs. 2 and 9 can 

become negative, potentially leading the negative fluxes and convergence issues.  One means of 

avoid this is to employ transverse leakage splitting [9], which helps maintain source positivity by 

moving the transverse leakage term into the total/transport cross section.  However, in the cases 

analyzed in this work, no transverse leakage splitting was necessary to obtain converged 

solutions. 

2.2 Azimuthal, Fourier-Moment Based Transverse Leakages 

In Eqs. 4 and 10, the transverse leakages retain explicit dependence on both the azimuthal 

and polar angles.  Eqs. 12 and 13 introduce a Fourier series to account for the azimuthal 

dependence.  For simplicity, these equations are written in terms of continuous angular variables, 

and 𝑋𝑌||𝑍 is used to denote that the approximation can be made to both radially- or axially-

averaged quantities.   

𝑇𝐿𝑔
𝑋𝑌||𝑍(𝑧, 𝛼, 𝜇) =

1

2𝜋
𝑇𝐿𝑔,0

𝑋𝑌||𝑍(𝑧, 𝜇) + 

1

𝜋
∑ (𝑇𝐿𝑔,𝑠𝑚

𝑋𝑌||𝑍(𝑧, 𝜇) sin(𝑚𝛼) + 𝑇𝐿𝑔,𝑐𝑚
𝑋𝑌||𝑍(𝑧, 𝜇) cos(𝑚𝛼))

𝑁𝑚𝑜𝑚

𝑚=1
 

(13) 

In both of these equations, there is a flat component (subscript 0) and a sine and cosine 

component for each Fourier moment (subgroup 𝑠𝑚 and 𝑐𝑚).  A single Fourier moment is 

considered to have one sine and one cosine moment. 

2.2.1 Axial leakages 

The coefficients for the Fourier-expanded axial transverse leakage are constructed using the 

moment-based angular fluxes that are determined by the axial SN sweeper.  These equations look 

identical to Eq. 4, but with the corresponding moment component of the angular flux: 

 𝑇𝐿𝑔,0
𝑍 (𝑧, 𝜇) =

𝜇

ℎ
(𝜑𝑔,0

𝑋𝑌(𝑧𝐵, 𝜇) − 𝜑𝑔,0
𝑋𝑌(𝑧𝑇 , 𝜇)), (14) 

 𝑇𝐿𝑔,𝑠𝑚
𝑍 (𝑧, 𝜇) =

𝜇

ℎ
(𝜑𝑔,𝑠𝑚

𝑋𝑌 (𝑧𝐵, 𝜇) − 𝜑𝑔,𝑠𝑚
𝑋𝑌 (𝑧𝑇 , 𝜇)), (15) 

 𝑇𝐿𝑔,𝑐𝑚
𝑍 (𝑧, 𝜇) =

𝜇

ℎ
(𝜑𝑔,𝑐𝑚

𝑋𝑌 (𝑧𝐵, 𝜇) − 𝜑𝑔,𝑐𝑚
𝑋𝑌 (𝑧𝑇 , 𝜇)). (16) 

𝜑𝑔
𝑋𝑌||𝑍(𝑧, 𝛼, 𝜇) =

1

2𝜋
𝜑𝑔,0
𝑋𝑌||𝑍(𝑧, 𝜇) + 

1

𝜋
∑ (𝜑𝑔,𝑠𝑚

𝑋𝑌||𝑍(𝑧, 𝜇) sin(𝑚𝛼) + 𝜑𝑔,𝑐𝑚
𝑋𝑌||𝑍(𝑧, 𝜇) cos(𝑚𝛼))

𝑁𝑚𝑜𝑚

𝑚=1
 

(12) 
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Since the 2D-MOC solver that uses the axial transverse leakage still explicitly solves all 

azimuthal and polar angles, the leakage source expansion is evaluated for each angle during the 

sweep. 

2.2.2 Radial leakages 

Similarly, the coefficients for the radial transverse leakage expansion are given by Eqs. 17-

19.  These coefficients are tabulated by the radial solver as it sweeps over all angles explicitly: 

𝑇𝐿𝑔,0
𝑋𝑌 (𝑧, 𝜇) = −∫

√1 − 𝜇2

𝐴𝑥𝑦

(

 
 
 
 cos(𝛼) ∫ (𝜑

𝑍(𝑥𝑅 , 𝑦, 𝛼, 𝜇) − 𝜑
𝑍(𝑥𝐿 , 𝑦, 𝛼, 𝜇))

𝑦𝑅

𝑦𝐿

𝑑𝑦

+ sin(𝛼) ∫ (𝜑𝑍(𝑥, 𝑦𝑅 , 𝛼, 𝜇) − 𝜑
𝑍(𝑥, 𝑦𝐿 , 𝛼, 𝜇))

𝑥𝑅

𝑥𝐿

𝑑𝑥

)

 
 
 
 

𝑑𝛼

2𝜋

0

, (17) 

𝑇𝐿𝑔,𝑠𝑚
𝑋𝑌 (𝑧, 𝜇) = −∫ sin(𝑚𝛼)

√1 − 𝜇2

𝐴𝑥𝑦

(

 
 
 
 cos(𝛼) ∫ (𝜑

𝑍(𝑥𝑅 , 𝑦, 𝛼, 𝜇) − 𝜑
𝑍(𝑥𝐿 , 𝑦, 𝛼, 𝜇))

𝑦𝑅

𝑦𝐿

𝑑𝑦

+ sin(𝛼) ∫ (𝜑𝑍(𝑥, 𝑦𝑅 , 𝛼, 𝜇) − 𝜑
𝑍(𝑥, 𝑦𝐿 , 𝛼, 𝜇))

𝑥𝑅

𝑥𝐿

𝑑𝑥

)

 
 
 
 

𝑑𝛼

2𝜋

0

, (18) 

𝑇𝐿𝑔,𝑐𝑚
𝑋𝑌 (𝑧, 𝜇) = −∫ cos(𝑚𝛼)

√1 − 𝜇2

𝐴𝑥𝑦

(

 
 
 
 cos(𝛼) ∫ (𝜑

𝑍(𝑥, 𝑦𝑅 , 𝛼, 𝜇) − 𝜑
𝑍(𝑥, 𝑦𝐿 , 𝛼, 𝜇))

𝑦𝑅

𝑦𝐿

𝑑𝑦

+ sin(𝛼) ∫ (𝜑𝑍(𝑥, 𝑦𝑅 , 𝛼, 𝜇) − 𝜑
𝑍(𝑥, 𝑦𝐿 , 𝛼, 𝜇))

𝑥𝑅

𝑥𝐿

𝑑𝑥

)

 
 
 
 

𝑑𝛼

2𝜋

0

. (19) 

2.3 Axial SN Solver 

The axial SN solver uses a cubic characteristic formulation to handle the spatial 

representation [5] and several variations to handle the angular representation.  When using 

isotropic (ISO) or azimuthally-integrated (AZI) radial transverse leakage, only polar angles in 

the quadrature need to be simulated.  With explicit radial leakages, each azimuthal and polar 

angle needs to be simulated, using an isotropic contribution of the scattering and fission sources 

as well as the angle-dependent contribution of the leakage.  However, the Fourier moment-based 

axial SN solver only retains a scattering and fission source components in the zeroth-moment 

equation (Eq. 20).  The corresponding sine and cosine moment equations (Eq. 21 and 22) only 

contain the leakage component for the source:   

 𝜇
𝜕

𝜕𝑧
𝜑𝑔,0
𝑋𝑌(𝑧, 𝜇) + Σ𝑡,𝑔𝜑𝑔,0

𝑋𝑌(𝑧, 𝜇) =
𝑄𝑔
𝑋𝑌(𝑧)

2
+ 𝑇𝐿𝑔,0

𝑋𝑌 (𝑧, 𝜇), (20) 

 𝜇
𝜕

𝜕𝑧
𝜑𝑔,𝑠𝑛
𝑋𝑌 (𝑧, 𝜇) + Σ𝑡,𝑔𝜑𝑔,𝑠𝑛

𝑋𝑌 (𝑧, 𝜇) = 𝑇𝐿𝑔,𝑠𝑛
𝑋𝑌 (𝑧, 𝜇), (21) 

 𝜇
𝜕

𝜕𝑧
𝜑𝑔,𝑐𝑛
𝑋𝑌 (𝑧, 𝜇) + Σ𝑡,𝑔𝜑𝑔,𝑐𝑛

𝑋𝑌 (𝑧, 𝜇) = 𝑇𝐿𝑔,𝑐𝑛
𝑋𝑌 (𝑧, 𝜇). (22) 

These equations produce the necessary angular fluxes to construct the axial transverse leakages 

described in Eqs. 14 through 16. 
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3 RESULTS 

3.1 Takeda Rodded LWR Benchmark 

The first test problem being considered is the Takeda Rodded LWR benchmark [12] that 

uses a two-group set of cross sections.  With symmetry, the problem is a 15 cm cube core 

surrounded by a 25 cm cube reflector.  Next to core is a 5 cm x 5 cm x 25 cm control rod that 

extends the full height axially.  Figure 1 shows the side and top views of the Takeda LWR model.   

 
Figure 1. Rodded Takeda Geometry (Side and Top Views) 

Table I shows the results for several different axial solvers, including the NEM and NEM-

SPN solvers that use isotropic radial and axial leakages.  Additionally, results for the axial SN 

solver are shown for several different transverse leakage options, including isotropic (ISO), 

moment-based (MOM-X), and explicit (EXP).  It is important to note that the azimuthally-

integrated leakage used by Hursin [8, 9] is most consistent with the MOM-0, which only 

contains a flat, azimuthally-integrated component without sine or cosine moments.   

Table I. Rodded Takeda Eigenvalue, Iterations, and Runtime 

Axial Solver Eigen. 
Diff. 

(pcm) Iter. 
Time 
(sec) 

Reference 0.96240 +/- 60 --- --- 

NEM (diff.) 0.95002 -1238 17 5.54 

NEM-SP3 0.95504 -736 18 5.61 

NEM-SP5 0.95520 -720 18 5.65 

SN ISO 0.95519 -721 22 6.41 

SN MOM-0 0.95447 -793 22 8.21 

SN MOM-1 0.96282 42 22 9.48 

SN MOM-2 0.96236 -4 22 10.90 

SN MOM-3 0.96240 0 22 12.20 

SN MOM-4 0.96239 -1 22 13.69 

SN EXP 0.96240 0 22 17.38 
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Table II shows the region-averaged flux distributions for the fuel, reflector, and control rod 

regions.  These fluxes are normalized per Eq. 23.  As with the eigenvalue results, the isotropic 

solvers yield significant errors in the flux distributions, particularly in the reflector region.  

Incorporating azimuthal dependence significantly reduces these errors. 

 ∑[∫𝜈Σ𝑓,𝑔(𝑥)𝜙𝑔(𝑥)𝑑𝑉]

2

𝑔=1

=∑[∑ 𝜈Σ𝑓,𝑔,𝑖𝜙𝑔,𝑖𝑉𝑖

𝑁𝑟𝑒𝑔

𝑖=1

]

2

𝑔=1

= 1 (23) 

Table II. Rodded Takeda Flux Comparisons 

Axial Solver Group Fuel Reflector Control Rod 

Reference 
1 4.7509E-03 (0.10%)  5.9251E-04 (0.21%)  1.4500E-03 (0.47%)  

2 8.6998E-04 (0.12%)  9.1404E-04 (0.23%)  9.7406E-04 (0.63%) 

NEM 
1 -1.52% 4.71% -0.02% 

2 0.03% 4.65% 1.44% 

SP3 1 -0.82% 1.79% -0.24% 

2 -0.09% 2.06% 0.37% 

SP5 1 -0.68% 1.52% -0.28% 

2 -0.12% 1.88% 0.26% 

SN ISO 1 -0.72% 1.58% -0.31% 

2 -0.11% 1.86% 0.23% 

SN MOM-0 1 -0.81% 1.93% 0.29% 

2 -0.10% 2.18% 1.16% 

SN MOM-1 1 -0.36% -0.26% -0.03% 

2 -0.18% 0.03% -0.40% 

SN MOM-2 
1 -0.42% -0.05% 0.06% 

2 -0.17% 0.22% -0.18% 

SN MOM-3 1 -0.41% -0.08% 0.04% 

2 -0.17% 0.20% -0.22% 

SN MOM-4 1 -0.41% -0.07% 0.05% 

2 -0.17% 0.20% -0.21% 

SN EXP 1 -0.41% -0.07% 0.05% 

2 -0.17% 0.20% -0.21% 

 

3.2  3D-C5G7 Extended (Rodded B Configuration)  

The next problem under investigation is the C5G7 extended benchmark configuration B 

[13].  Figure 2 shows the radial pin layout of the core, which contains both UO2 and MOX fuels. 
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 Figure 2. C5G7 Geometry Radial Pin Layout 

Figure 3 shows the axial layout of the core with two cross-sectional slices.  In the rodded B 

configuration, the control rod is inserted 28.56 cm into the center UO2 assembly and 14.28 cm 

into both of the MOX assemblies.  The outer UO2 assembly remains unrodded, with the rod 

remaining in the axial reflector above the assembly.  The rodded B configuration has been 

chosen for evaluation because one would expect the azimuthal dependence to be more important 

in rodded cases. 

 

Figure 3. C5G7 Geometry Rodded B Configuration Axial Layout 

To ensure the pin power distributions are tightly converged, new reference solutions were 

obtained using the SHIFT Monte Carlo code [14] using 240 billion histories.  The MPACT 

results were obtained using 0.01 cm ray spacing in a Chebyshev azimuthal quadrature with 16 

azimuthal angles and a Gauss-Legendre polar quadrature with 4 polar angles per half-space.  
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Additionally, unless otherwise specified, a 3.57 cm axial mesh was used.  Lastly, all MPACT 

cases were run on Titan using 648 processors.  For the heterogeneous pin cases, a radial mesh of 

5 fuel rings and 3 moderator rings with 16 azimuthal divisions was used.  Because the 

homogeneous pins lead to fuel at all corners of each pin, a 15x15 Cartesian sub-meshing was 

used to more accurately mesh the corners.  For consistency with the benchmark, the pin powers 

were calculated for the three 14.28 cm fuel planes as shown in Figure 3. 

3.2.1 Heterogeneous pins  

Table III shows the eigenvalue and absolute difference of the pin power results for the 

standard rodded B configuration with heterogeneous pins with distinct fuel and moderator 

regions.  As expected, the diffusion-based NEM solver is the least accurate with significant 

errors both in eigenvalue and pin power distribution.  The NEM-SPN and SN solvers with 

isotropic leakages significantly improve these errors.  However, including azimuthal dependence 

of the leakages improves the eigenvalue discrepancy, but yields notably higher pin power errors 

(roughly twice as large as its isotropic counterpart). 

Table III. C5G7 Rodded B Configuration Results (Het. Pins) 

Axial 
Solver Eigen. 

Diff. 
(pcm) 

ΔP 
RMS 
(%) 

ΔP 
Max 
(%) Iter. 

Time 
(min) 

MCNP 1.07777 --- --- --- --- --- 

SHIFT 1.07772 --- --- --- --- --- 

NEM (diff.) 1.07594 -178 0.77 3.55 7 5.02 

NEM-SP3 1.07701 -71 0.29 0.95 9 5.96 

NEM-SP5 1.07705 -67 0.29 0.94 6 4.51 

SN ISO 1.07701 -71 0.29 0.95 10 6.37 

SN MOM-0 1.07700 -72 0.31 1.02 11 10.55 

SN MOM-1 1.07804 32 0.56 2.31 11 11.29 

SN MOM-2 1.07798 26 0.56 2.28 11 12.40 

SN MOM-3 1.07799 27 0.56 2.29 11 12.94 

SN MOM-4 1.07798 26 0.56 2.29 11 13.90 

SN EXP 1.07798 26 0.56 2.29 11 17.32 

 

By more accurately representing the angular dependence of the leakages and using refined 

parameters for the quadrature and ray spacing, there is effectively only one major source of error 

in the spatial representation of the axial leakage, which has been assumed to be flat.  To test this, 

an alternative problem using volume-homogenized, pin-wise cross sections has been formulated 

to reduce the errors introduced by assuming the axial leakage is flat.  SHIFT [14] has also been 

used to generate a reference solution. 

3.2.2 Homogeneous pins 

Table IV shows the results for the alternative case with homogeneous pins.  The solvers with 

isotropic leakages yield higher errors than with heterogeneous pins, supporting the idea that 

cancellation of error is an important factor.  While the problem is different, it is not so different 

CASL-U-2015-0178-000



Stimpson, Collins, and Downar 
 

 Page 10 of 13 

 

as to expect significant differences in the error distribution.  However, now the eigenvalue and 

pin power errors are very significantly reduced by including azimuthal dependence of the 

leakages.  The pin power errors are roughly three times smaller than with isotropic leakages, and 

the eigenvalue discrepancy is almost completely removed. 

Table IV. C5G7 Rodded B Configuration Results (Hom. Pins) 

Axial 
Solver Eigen. 

Diff. 
(pcm) 

ΔP 
RMS 
(%) 

ΔP 
Max 
(%) Iter. 

Time 
(min) 

SHIFT 1.07468 --- --- --- --- --- 

NEM (diff.) 1.07241 -227 1.34 6.25 7 5.03 

NEM-SP3 1.07360 -108 0.47 2.24 8 5.45 

NEM-SP5 1.07364 -104 0.44 2.10 8 5.51 

SN ISO 1.07360 -108 0.49 2.37 7 4.89 

SN MOM-0 1.07359 -109 0.48 2.35 10 9.63 

SN MOM-1 1.07470 2 0.15 0.69 11 11.67 

SN MOM-2 1.07464 -4 0.15 0.72 10 11.26 

SN MOM-3 1.07465 -3 0.15 0.71 10 11.94 

SN MOM-4 1.07465 -3 0.15 0.72 10 12.74 

SN EXP 1.07465 -3 0.15 0.72 10 15.83 
 

Figure 4 shows the pin power differences for the SN solver with isotropic transverse 

leakages.   Not surprisingly, the highest errors are present in the bottom plane, which is along the 

reflective boundary and has the highest pin powers.  Figure 5 shows the results with explicit 

transverse leakages.   With a sufficient number of moments, the moment-based solvers yield 

nearly identical results.  The remaining errors in Fig. 5 can be further reduced by refining the 

axial mesh. 

 

Figure 4. Pin Power Differences, Isotropic Transverse Leakages (3.57 cm Mesh) 
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Figure 5. Pin Power Differences, Explicit Transverse Leakages (3.57 cm Mesh) 

Table V shows the memory profiling results for the moment-based and explicit solvers 

for the heterogeneous pin case.  As one would expect, the footprint of the angle-dependent 

memory constructs is reduced by an order of magnitude.  Because refined parameters were used, 

such as ray spacing and radial mesh, there is a significant amount of memory that is unaffected 

by the Fourier moment approximation.  Thus, the overall memory reduction is roughly a factor of 

3 or 4 if only one or two Fourier moments are used.   

Table V. Angle-Dependent and Total Memory Profile (per plane) 

Number of 
Moments 

Angle-Dep. Memory 
Per Plane (MB) 

Total Memory 
Per Plane (GB) 

0 137 1.56 

1 291 1.71 

2 444 1.86 

3 598 2.01 

4 752 2.16 

Explicit 4,919 6.23 

4 CONCLUSIONS  

In this work the formulation of a new axial SN solver was presented that can properly 

handle the approximation of the radial and axial transverse leakages by a Fourier series.  This 

approximation allows for a significant reduction in the memory footprint and a modest reduction 

in the overall run time.  The new capabilities were demonstrated on the Takeda Rodded LWR 

benchmark problem and two C5G7 extended benchmark problems.  The first C5G7 problem 

followed the benchmark specification using heterogeneous pins.  It was observed that increasing 

the fidelity of the leakage angular representation yielded larger errors in the pin power 

distribution.  This is suspected to be the result of cancellation of error between the spatial and 

angular representations of the leakage.  To test this, an alternative C5G7 problem was proposed 

that used pin-homogenized cross sections, making the flat axial leakage approximation more 

valid and reducing the error introduced by it.  In the Takeda benchmark and the new, alternative 

C5G7 problem the eigenvalue and pin power errors were reduced considerably with higher-order 

angular representation.  In all cases, the Fourier moment-based approach performed well, 
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suggesting that only one or two Fourier moments are necessary to accurately capture the 

azimuthal behavior.  Additionally, no solution relaxation [15] was used to generate these 

solutions. 

Future work should focus on providing more accurate intrapin spatial distributions for the 

axial transverse leakage.  One option would be to perform axial solves on the fine mesh basis [7], 

but it may also be possible to accurately represent the shape while still operating on the pin-

homogenized basis. 
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