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ABSTRACT

Nuclear engineering codes are being used to simulate more challenging problems and at higher
fidelities than for which they were initially developed for. In order to expand the capabilities of these
codes, state of the art numerical methods and software quality measures need to be implemented. One of
the key players in this effort is the Consortium for Advanced Simulation of Light Water Reactors (CASL)
through development of the Virtual Environment for Reactor Applications (VERA). The sub-channel
thermal hydraulic code used in VERA, COBRA-TF (Coolant-Boiling in Rod Arrays - Three Fluids), is
partially developed at the Pennsylvania State University by the Reactor Dynamics and Fuel Management
Research Group (RDFMG). The RDFMG of version COBRA-TF is referred to as CTF.

In an effort to help meet the objectives of CASL, a version of CTF has been developed that solves
the residual formulation of the one dimensional single-phase conservation equations. The formulation of
the base equations as residuals allows for the isolation of different sources of error and is a good tool for
verification purposes. This paper outlines the initial verification work of both the original version of CTF
and its residual formulation. The verification problem is a simple 1-D single phase liquid channel with no
heat conduction, friction, or gravity. A transient boundary condition is applied that alters the inlet density
and temperature while keeping the velocity within the channel constant. The constant velocity simplifies
the modified equation analysis and the order of accuracy is readily obtained. A Richardson extrapolation
is performed on the problem on the temporal and spatial step sizes to determine the convergence and
order of accuracy of the discretization error. While extensive validation work has been present for CTF,
there has been little to no verification work previously.
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1 INTRODUCTION

For the past several decades, the primary focus in nuclear engineering within the United States
has been on light water reactors (LWR). Commercially, all nuclear reactors are either boiling
water reactors (BWR) or pressurized water reactors (PWR). Correct computation of the thermal
hydraulics within the reactor core leads to efficient design and accuracy in the safety analysis. A
popular subchannel code for modeling the hydrodynamics within the reactor core is CTF, which
is a subchannel thermal-hydraulics code developed from COBRA-TF [1]. This FORTRAN based
code solves 8 conservation equations for liquid, entrained droplet, and vapor phases phases, plus
one conservation equation for non-condensable gases. A 1-D residual formulation of the code has
been created. While other residual formulations have been formed for other versions of COBRA-
TF [2], none have been integrated into the CASL version of CTF. The current version of CTF has
standard verification practices that focus on software quality engineering similar to those in other
versions of COBRA-TF [3], but lacks an in depth verification document that focuses on numerical
algorithm verification. This paper focues on this second type of verification and outlines the initial
verification of the original version of the code as well as the residual version of the code. The
verification problem is a single phase 1-D channel with transient inlet density and mass flow rate.
The problem will undergo a Richardson’s extrapolation in the temporal and spatial domains to
verify the convergence and order of accuracy of the error. The study of the order of accuracy is
considered one of the more rigorous verification criteria [4]. This work will be expanded to perform
verificaiton on the single phase equations in both axial and transverse dimensions [5], and coupled
fluid heat conduction [6].

2 CTF

The thermal hydraulics of a LWR core is an important part of nuclear reactor design. CTF has
the ability to solve for the temperature and pressure of water within the rod structure of a LWR
reactor core. Currently, the conservation equations analytically reduce into a pressure matrix in a
semi-implicit method with rod temperatures solved for explicitly. The residual formulation of the
code currently solves the 1-D single phase liquid conservation equations and calculated variables in
a residual formulation. While it has the ability to solve the conservation equations semi-implicitly
or implicitly, only the semi-implicit solution method is considered in this paper. This residual
formulation should allow for easier and more in depth verification analysis. This paper details the
initial verificaiton of the residual formulation and original code.

2.1 Software Quality Assurance

Software quality assurance is a set of tools and procedures that help ensure that the software is
reliable. CTF is managed by GitHub repository setup and maintained by CASL. An extensive test
matrix is run before each major push to ensure that the code meets the specified requirements. The
test matrix consists of a fully automated suite of regression tests that include unit and validation
tests. This paper will be the beginning of a verification manual, integrating this verification problem
directly into the test suite.
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Initial Verification of CTF
2.2 1-D Single Phase Liquid Conservation Equations

The finite volume structure in CTF in figure 1 is for a one-dimensional channel in the axial
direction with n number of cells. The first and last cells at O and n + 1 are ghost cells and act as
the boundary conditions for the problem. Pressure, enthalpy, and density are averaged over the cell
volume and are located at the center of the cell. Mass flow rate and velocity are located at the faces
in between cells. The cells are represented with an index ¢, and the faces with indexes of 7 + % or
71— % This project will initially focus on this 1-D configuration. Usually the code is 3-D, with
channels connecting to each other in two more dimensions.
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Figure 1. The finite volume structure for CTF

For the single phase formulation of the Euler equations, the unknown variables are pressure P,
velocity u, enthalpy h, and density p. To solve for these variables, three conservation equations and
one equation of state are used [7]. The conservation of mass given in equation 1 is the most basic
with the rate of change in density equal to the advection from the upwinded cell. The conservation
of momentum in equation 2 balances the time rate of change of momentum, the advection of
momentum from adjacent cells, the gradient of pressure, and body forces. The conservation of
energy equation 3 contains two temporal terms; the time rate of change of the enthalpy, and the
time rate of change of the pressure. These temporal terms are balanced against the advection of
the enthalpy. For this work, the equation of state will be assumed to be approximately linear. This
assumption proves valid due to the small changes in pressure and enthalpy as described later.
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Page 3 of 12

CASL-U-2015-0182-000



Chris Dances, Vince Mousseau, Maria Avramova

0

U+ VP = pg =0 @)
dph  OP B
5 o V(puh) =0 3)

2.3 Residual Formulation and Jacobian Construction

A residual is simply the difference between the value at some future iteration £+ 1 and the value
at the current iteration k. Currently in CTF, the future iteration is taken to be the next time step n + 1
and the current iteration is the current time n. The residual can be expressed for desired variables or
conservation equations. For example, the residual for density, dp;, is the difference between iterate
levels k + 1 and k, pf“ — pF. The residuals for the equations are determined by substituting the
residuals into the discretized equations, which should effectively change all n + 1 into k. Each
cell will have three residual variables and three residual equations. For the entire solution, we
will then have a residual variable array X, and a residual function array F'(X) which defines a
linear system JJX = —F(X). The Jacobian matrix is defined as the derivative of each response of
the function F; with respect to each variable X;. The derivative can be calculated numerically as
shown by equation (4) where € is a small numerical value. Since the system is considered linear,
the approximation of the Jacobian matrix in this manner is accurate. As a check, the numerically
computed Jacobian matrix was reduced to a pressure matrix using guassian simulation and compared
to the analytical pressure matrix from CTFE. Each of the entries of the Jacobian matrix appeared to
match to nearly within machine precision.

L _OR(X) | B(Xit+d - B(X)
S 8XZ - €

)

To build the Jacobian matrix, an object oriented class was created that contains three arrays;
an array that points to the residual functions, an array that points to the position within a target
variable array, and an array that has the index that the function is to be evaluated at. These lists
can be appended in any order, but they have to be appended simultaneously such that variables and
functions correspond with each other. To construct the Jacobian matrix, the residual function and
residual variable arrays can each be looped over to numerically build the Jacobian matrix as seen in
figure 2.

3 ISOKINETIC SINE WAVE ADVECTION

The procedures that can be used for code verification, from least to most rigorous, include:
expert judgment, error quantification, consistency/convergence, and order of accuracy [8]. For this
work, the Richardson extrapolation will be used to check for convergence and order of accuracy of
the error in space and time. The error should converge to zero, and the order of accuracy should
converge to the values obtained through the modified equation analysis [9] at the end of this section.
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Figure 2. Structure of the Jacobian matrix for single phase liquid

3.1 Problem Setup

To obtain an analytical solution for a subchannel code, typically the method of manufactured
solutions [10] is needed. To readily obtain an analytical solution and isolate only the mass and energy
conservation equations, several simplifications to the verification problem are made. Only one
channel is considered to make the problem 1-D. In order to make the problem perfectly isobaric and
isokinetic, grid spacer losses, frictional losses, and gravity head losses are set to zero representing
a smooth horizontal pipe. Small fluctuations in pressure and velocity may still occur due to the
assumption that the EOS is linear. The channel geometry and operating conditions approximate a
standard PWR as shown in table I. The inlet of the channel has a constant velocity with a fluctuating
enthalpy that corresponds to be near the standard PWR rod bundle coolant channel inlet conditions.
The problem will aslo have constant axial spacing and time step size. The length of the transient
was defined to be quadruple the time needed for the liquid at the inlet to advect to the outlet. The
frequency of the sine wave was defined to generate a full period of a spatial wave across the length
of the channel. With these simplifications, the method of manufacturing solutions is unnecessary
since the known solutions are simply the advection of the transinet inlet conditions. The functions
for the etnhalpy / and mass flow rate, 12, are given in equations 5 and 6 where z is the length from
the inlet and ¢ is the simulated time. The functions smoothly transition to the initial condition of a
straight line across the domain. The enthalpy and mass flow rate vary proportionally to the density
such that an isokinetic boundary condition is created at the inlet. While these simplifications do
not model a realistic problem, they appropriately isolate the 1-D single phase mass and energy
conservation equations for the purpose of verification.

Wz, 1) = % ((hl + ha) + (hy — ha)cos (w (t _ %))) 5)

((m1 + 1ig) + (1 — 1i22)cos (w <t - %))) 6)
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Table 1. Problem Parameters

Parameter Symbol Value Unit
Axial Length L 3.6586 m
Channel Area Ay | 4.94E-005 | m?

Wetted Perimeter P, 1.49E-002 | m
Velocity Vs 7.35 N
Pressure P, 155.00 bar

Temperature 1 Ty 290.00 °C
Temperature 2 T, 295.00 °C

Enthalpy 1 hy 1306.3 o

Enthalpy 2 R 1310.9 o

Mass Flow Rate 1 my 0.2707 %‘7

Mass Flow Rate 2 | 1y 02672 | M

Final Time 17 2.00 sec

Wave Frequency w 1.00 Hz

The comparison between the data table and the output in CTF are shown for enthalpy and mass
flow rate in figures 3 and 4, respectively. The CTF output was read from the high precision VTK
data files at each point in time, which omitted the actual ghost cell where these values were applied.
The CTF values are located at the nearest node to the inlet, and will experience small amounts
of numerical diffusion. For large mesh sizes, this discrepancy is negligible as can be seen by the
overlapping profiles in figures 3 and 4.

channel_liquid_enthalpy [kJ per kg]
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Figure 3. Enthalpy Near the Inlet and the Analytical Solution

The pressure and the velocity fluctuate by less than 0.25% during the simulation due to
approximating the EOS as a linear function. This is considered small for this problem and should
not greatly affect the order of accuracy of the error. The VTK output files allow for a high level of

precision, reducing round off error in the output during the post processing.
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Figure 4. Density Near the Inlet and the Analytical Solution

3.2 Modified Equation Analysis

The order of accuracy in time and space can be analytically determined for this problem through
a modified equation analysis. Because the velocity is constant, it can be pulled out of the spatial
derivative as shown in equation 7. Using upwinding, the finite difference can be written to look like
equation 8. A second order Taylor series approximation can be used for p!'*! and p? ; as shown in
equations 9 and 10 respectively. The higher order terms (O(Az?, At?)) are not taken into account
for this approximation. The Taylor series approximations can then be substituted into 8 to yield 11.
This is the beginning of the modified equation analysis. The goal will be to isolate the original PDE
and define the truncation error.

% + Uo% =0 )

p;ﬁlA; o + U, pi ; 5?—1 —0 ()

pith = pi + %At * %%Aﬁ +O0(At) ®)
pra = — %Az + %%A:ﬁ +0(Az?) (10)

The lengthy equation 11 can be reduced to equation 12 since the p;' terms subtract out and
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the At and Ax terms in the denominator cancel out. This reduced equation can be re-written into
equation 13, with the original PDE followed by the truncation terms.

(,0z apAt—FlapAtQ)—p? pf‘—(p” A$+lapr2

> + O(Ax*, At?) =0 (11)

2 Ot? 2 Ox?
At + o Az
op 10% op 10% 2 AL
En + = 5 9 — At + Uy <(‘3J: 28x2A + O(Az*, At") =0 (12)

The terms to the right of the original PDE are the first order accurate truncation terms. Notice
how the truncation error is dependent on both the on the second derivatives of density with respect
to space and time, and on the numerical spacing At and Ax. Since the truncation error is linearly
dependent on At and A, the order of accuracy is 1 with respect to time and space.

107
2 022

dp

8p 10%
5% — At — Up=

P 2
o 28752 Ax—l—O(A JAEY) =0 (13)

+Up=—

When the energy equation undergoes a similar modified equation analysis, the order of accuracy
is also 1 for time and space. The momentum conservation equation does not apply for this problem
since the velocity is constant.

4 RICHARDSON EXTRAPOLATION

The Richardson extrapolation was performed by refining the spatial and temporal step sizes by
a factor of 2 for a set number of times. The spatial and temporal studies are refined separately in
their own study in order to isolate the spatial and temporal affects on the solution. The generation
of the inputs, running of the codes, and analysis of the output were automated with a python script
in order to reduce user input errors and increase repeatability. The computational resources for the
spatial study were much higher than the temporal study due to the need to keep the courant number
below 0.500. To keep the computational resources needed to perform this analysis reasonable, fewer
spatial refinements were performed compared to the temporal analysis.

4.1 Convergence of Error

The difference between iterations was computed at each time step and spatial location for each
quantity of interest. This difference is considered as the error between each iteration. For the spatial
refinement, the lower iterate values were numerically integrated to match the shape of the initial
domain. The errors were then summed over the entire domain to yield a total error for each variable.
The total error for density is plotted in figures 5 and 6 as a function of temporal and spatial step size.
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Figure 5. Difference Between Successive Temporal Refinements for Density

The data points were chosen to be inside of the asymptotic range as shown by the good power
fit with an exponent near 1. The power fit shows that as the temporal and spatial step sizes are
reduced, the numerical error approaches zero. The residual formulation and original versions of

CTF show good agreement with each other.
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Figure 6. Difference Between Successive Spatial Refinements for Density
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4.2 Order of Accuracy

The order of accuracy for this verification problem is first order as shown by the modified
equation analysis. This can be considered to be the exponent on the power fits as seen in figures
5. However the order of accuracy p can be calculated by using equation 14 where f;, fo, f3 are
consecutive levels within the same Richardson extrapolation study. The refinement factor, R, has
the constant value of 2 for both the spatial and temporal studies.

fa—fo
in <f2—f1>

In(R) 14

p:

The order of accuracy for density and enthalpy are presented for the temporal analysis and
spatial analysis in figures 7 and 8 respectively. The temporal order of accuracy is well within the
asymptotic range for the whole analysis, and moves closer to 1.0 with decreasing time step size.
The spatial order of accuracy is a slightly outside the asymptotic range, but approaches an order of
accuracy of 1.0 with decreasing mesh size.
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Figure 7. Temporal Order of Accuracy

The slight differences between the original version of CTF and the residual formulation might
be due to the different solution methods and back substitution of variables. Despite the small
differences, both versions of the code exhibit order of accuracies very close to 1 which was obtained
through the modified equation analysis. One advantage of the residual formulation is that different
numerical techniques can be readily implemented that could match higher orders of accuracies from
other codes [5].
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S CONCLUSIONS

The residual formulation of CTF allows for a numerical computation of the multivariable
Jacobian matrix compared to the original analytical derivation of a pressure matrix. The 1-D
isokinetic single phase liquid verification problem is a good verification problem due its isolation
of the order of accuracies through modified equation analysis. The discretization error for both
versions of the code converged to zero with decreasing time step and axial mesh size. The order of
accuracy for the temporal and spatial refinements matched very closely with the modified equation
analysis for both codes. For all of these data points, the residual formulation of the code showed
discretization errors that were very close with the original version of the code. Future work should
compare the numerical error obtained in the code to the analytical error predicted by the modified
equation analysis using the derivatives of the known solutions. While within the asymptotic range,
the first order accurate analytical error should almost exactly match the error from the code.
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