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Goals 

 

• Reflect on components of simulation credibility 
 

• Understand benefits of automated parametric analysis: sensitivity 
analysis, uncertainty quantification, and model calibration 
 

• See concrete examples with CASL progression problem 6, 
modeled with VERA Core Simulator: 
– Sensitivity: determine most influential parameters  

– Calibration: tune closure models to experimental data 

– Uncertainty: determine effect of parametric uncertainty 
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Scenario: 
CASL Progression Problem 6  

• Single PWR assembly, hot full power, 1300 ppm boron 

• Decision maker requests predictions, with error bars, for steady-
state quantities of interest (QOI): 
– reactivity 

– maximum pin power 

– maximum fuel temperature 

• Analyst assesses relevant phenomena; 
simulates with CASL’s VERA CS, coupling: 
– Insilico (later MPACT) for neutronics  

– COBRA-TF for thermal-hydraulics and fuel (later Peregrine for fuel) 

 

• Is the simulation is sufficiently accurate to inform decisions? 

• If not, where should resources be invested? 

• How can sensitivity, calibration, and uncertainty analysis help? 
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Expectations of Quality 

Analysts 

Expectations of the accuracy of 

scientific simulations vary.  

Who are you trying to convince? 

The customer 

Weirs SAND 2010-3325C 

– My job 

– My employer’s reputation 

– My paycheck 

– Your paycheck 

• I’d bet X on the result; X=… 

• Uncertainty Quantification 

• Error bars on simulation results 

• Result converges with refinement 

• Mesh refinement 

• Eyeball norm 

• Trends are reasonable 

• Result is plausible 

• Result is not ridiculous 

• Code returns a result 
The public 

Code developers 
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Simulation relies on a modeling 
process 

5 

reality 
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Prediction with a simulation 
code is easy, right? 

• Limited physical data (observational or experimental)  

• Limited simulations (high computational demands…) 

• Imperfect computational models (missing physics, etc.) 

• Under-resolved approximations or numerics 

• Unknown model parameters and boundary conditions 

• Imperfect humans 

• We want to extrapolate to conditions beyond validation regime… 

 

 

18 AMT 2009 

We all Avoid This Question 

How Much is Enough? 

Do you acknowledge strengths and 

weaknesses of your computational results? 
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Effective Use of Simulations 

• Intended use should dictate 
simulation quality (PCMM) 

• Account for and represent 
myriad uncertainty sources 

Initial predictive capability maturity 

assessment for COBRA-TF 
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Systematic Way to Address 
These Challenges 

• Software quality: must be engineered in from the start: requirements, revision 
control, testing, documentation 

• Code verification: does the implementation of an algorithm exhibit the 
properties expected from numerical analysis, e.g., conserves mass, converges 
second order? 

 

 

• Solution verification: is computed solution correct for the problem of interest? 
Convergence to correct answer, at correct rate (order), as model is refined. 

Governing 

Equations 

Discrete 

Equations 

Numerical 

Solutions 

Algorithms Implementation 
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Systematic Way to Address 
These Challenges 

• Validation: Are the model and equations right for the intended application? If 
not, what needs improvement? 

Viewgraph 

Norm 

Validation is ultimately a 

quantitative comparison 

with data, accounting for 

uncertainty 
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Dakota: Software Delivery  
Vehicle for CASL VUQ Algorithms 

• Apply sensitivity analysis, UQ, optimization, and calibration 
to computational models 

• Facilitate design trade-offs, V&V, QMU, risk-based decision 
making 

• Extensive algorithm toolbox 

• Non-intrusive iterative systems 

analysis 

• Parallel computing: desktop to 

HPC 

• Simulation management 

approximation/surrogate 

Dakota 
sensitivity analysis 

uncertainty quantification 

optimization 

parameter estimation 

VERA Core Simulator 

response  

metrics 

model 

parameters 

Included with VERA, or download  

from http://dakota.sandia.gov/ 
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Parametric Analysis 

• Automated sensitivity, calibration, or uncertainty analyses can be 
helpful at various stages of code maturity 

• However, some level of software quality, verification, and 
validation is required: otherwise iterative analysis can hide bugs, 
insufficient numerical methods, etc. 

• To use Dakota, need a “run-ready” model: 
– Parameters must be accessible for programmatic adjustment; 

may not be appropriate to expose in user input 

– Analysis workflow must be automated and robust to parameter variations 

– Quantities of interest must be accessible 

• For a few key CASL cases, this work has been done 
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What is a “Parameter”? 

What might we want to parameterize in a model? 

• physics/science parameters; closure laws, rate constants 

• statistical variation, inherent randomness 

• model forms / accuracy 

• material properties (fluids, solids) 

• manufacturing quality / tolerances 

• operating environment, interference, e.g., reactor operating conditions 

• initial, boundary conditions; forcing 

• geometry / structure / connectivity 

• Input data, e.g., cross section libraries, chemical reactions DBs 

• numerical accuracy (mesh, solvers); approximation error 
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Decomposing QOI Yields 
Parameters Per Phenomenon 

Decompose QoI into its component pieces 
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Why Perform  
Sensitivity Analysis? 

• What? Understand code output variations as input factors vary 
 

• Why? Identify most important variables and their interactions 

– Ranking/screening:  Identity the most important variables, down-select for further UQ 
or optimization analysis 

– Provide a focus for resources 

• Data gathering and model development 

• Code development 

• Uncertainty characterization 

– Identify key model characteristics: smoothness, nonlinear trends, robustness 

• Secondarily: 

– Identify code and model issues (robustness) 

– Reuse designs to construct surrogate models 
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Selected Approaches to 
Global Sensitivity Analysis 

• Local derivatives or sensitivities 

• Univariate or joint parameter studies 

• Global methods: sample designs spanning input space 

– Sampling: Monte Carlo, Latin hypercube, Quasi-MC, CVT 

– DOE/DACE: factorial, orthogonal arrays, Box-Behnken, CCD 

– Morris one-at-a-time 

• Typical analysis results for responses 

– Simple and partial (including rank)  
correlation coefficients 

– Regression and resulting coefficients 

– Variance-based decomposition 

– Importance factors 

– Scatter plots 
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Sensitivity Studies 
with VERA CS 

• Mousseau, Hooper, Belcourt “top-down” approach with Insilico/COBRA-TF to 
identify most important parameters for UQ, possibly later model improvements 

• Based on QOI, identified key equations and related closure laws, e.g., gap 
conductivity, fuel temperature models, and added factors A, B: 

 

 

• Typical for these studies:         , but can also use B(x,t) to 
perform numerical verification 

• Also included cross sections, axial mesh spacing 

• Basic centered parameter study: each parameter at  
nominal, positive increment, negative increment 

• Sometimes for initial studies, a coarse down-select suffices 
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Reactivity Sensitivity 

Variable Description Multiplier Percent Difference Physics 

Cross Sections NA 1.283 Neutronics 

Cross Sections NA -1.163 Neutronics 

Gap Conductivity 0.5 -0.422 Fuel 

Gap Conductivity 1.5 0.152 Fuel 

Fuel Temperature 0.95 0.081 Coupling 

Fuel Temperature 1.05 -0.080 Coupling 

Fuel Conductivity 0.9 -0.073 Fuel 

Fission Heat 1.05 -0.062 Coupling 

Fission Heat 0.95 0.061 Coupling 

Fuel Conductivity 1.1 0.059 Fuel 

Moderator Density 1.05 -0.035 Coupling 

Mesh spacing NA 0.002 Numerical 

Moderator Density  0.95 -0.017 Coupling 

Wall Heat Transfer 0.95 -0.013 Thermal Hydraulics 

Moderator Temperature 1.05 -0.010 Coupling 

Moderator Temperature 0.95 0.009 Coupling 

Wall Heat Transfer 1.05 0.009 Thermal Hydraulics 

Fuel and Coupling are “important” 
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Max Pin Power Sensitivity 
Variable Description Multipli

er 

Percent 

Difference 

Physics 

Gap Conductivity 0.5 -2.150 Fuel 

Gap Conductivity 1.5 0.905 Fuel 

Cross Sections NA 0.815 Neutronics 

Fuel Conductivity 0.9 -0.493 Fuel 

Fuel Conductivity 1.1 0.411 Fuel 

Fission Heat 0.95 0.327 Coupling 

Fission Heat 1.05 -0.315 Coupling 

Fuel Temperature 0.95 0.280 Coupling 

Fuel Temperature 1.05 -0.260 Coupling 

Mesh Spacing NA 0.250 Numerical 

Cross Sections NA -0.228 Neutronics 

Moderator Density 1.05 -0.073 Coupling 

Wall Heat Transfer 0.95 -0.072 Thermal 

hydraulics 

Wall Heat Transfer 1.05 0.053 Thermal 

Hydraulics 

Moderator Density 0.95 0.052 Coupling 

Moderator Temperature 0.95 0.038 Coupling 

Moderator Temperature 1.05 -0.035 Coupling 

Turbulent Mixing of Liquid Mass 1.05 0.006 Thermal 

Hydraulics 

Turbulent Mixing of Liquid Mass 0.95 0.005 Thermal 

Hydraulics 

Turbulent Mixing of Liquid 

Momentum 

1.05 0.002 Thermal 

Hydraulics 

Turbulent Mixing of Liquid Energy  1.05 0.002 Thermal 

Hydraulics 

Turbulent Mixing of Liquid Energy 0.95 0.001 Thermal 

Hydraulics 

Neut & coupling 
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Max Fuel Temp Sensitivity 

Variable Description Multiplier Percent Difference Physics 

Gap Conductivity 0.5 21.423 Fuel 

Gap Conductivity 1.5 -7.445 Fuel 

Fuel Conductivity 0.9 6.807 Fuel 

Fuel Conductivity 1.1 -5.405 Fuel 

Fission Heat 1.05 4.436 Coupling 

Fission Heat 0.95 -4.354 Coupling 

Cross Sections NA 0.739 Neutronics 

Wall Heat Transfer 0.95 0.610 Thermal Hydraulics 

Wall Heat Transfer 1.05 -0.495 Thermal Hydraulics 

Fuel Temperature 0.95 0.254 Coupling 

Fuel Temperature 1.05 -0.236 Coupling 

Cross Sections NA -0.198 Neutronics 

Moderator Density 1.05 -0.106 Coupling 

Mesh Spacing NA 0.050 Numerical 

Moderator Density 0.95 0.085 Coupling 

Moderator Temperature 0.95 0.034 Coupling 

Moderator Temperature 1.05 -0.032 Coupling 

Turbulent Mixing of Liquid Mass 0.95 0.005 Thermal Hydraulics 

Turbulent Mixing of Liquid Momentum 1.05 0.002 Thermal Hydraulics 

Turbulent Mixing of Liquid Mass 1.05 -0.001 Thermal Hydraulics 

Turbulent Mixing of Liquid Energy 0.95 0.001 Thermal Hydraulics 

Coupling and Neutronics 
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Model Calibration 

• Calibration: use data to improve characterization of input parameter values, by 
maximizing agreement between simulation and experiment (inverse modeling) 

• Tune models to match specific scenarios 

• Make them more robust to predict a range of outcomes 

• Deterministic calibration: seek a single set of parameter  
values that best match the data, typically in the two-norm 

 

 

– Initial iterate θ0, nonlinear optimization, updated values θ 

• Bayesian calibration: combine prior parameter distributions with data to update 
the statistical characterization of the parameters 

 

 

 

– Prior, statistical inference (MCMC), posterior 

• Calibration is not validation!  Separate data must be used to assess whether a 
calibrated model is valid. 
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Bayesian Calibration to Heat 
Transfer Closure Law 

• Use data to refine predictions with COBRA-TF 

• Nusselt number (Nu): ratio of convective to conductive heat transfer normal the 
boundary 

• Instead of fixed closure law coefficients in Dittus-Boelter, make them variable 
parameters θ (for expert users only): 

 

 

• In a typical sensitivity or uncertainty study, might use expert opinion to say 

 

• Dittus Boelter was based on 13 data sets, this analysis is based on one, Morris 
and Whitman, “Heat Transfer for Oils and Water in Pipes,” Industrial and 
Engineering Chemistry, Vol. 20, No. 3, pp.234-240, 1928. 

• Used delayed rejection adaptive metropolis for Bayesian calibration with this 
data 

320.8 0.4

10.023Re Pr Re PrNu
 

 1 0.0, 0.046   2 0.0,1.6   3 0.0, 0.8 
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Updated Parameter 
Distributions 

• Lead coefficient θ1 now lower: 0.004 from 0.023. 

• Reynolds exponent θ2 now larger: 0.99 from 0.8 

• Prandlt exponent θ3 slightly larger: 0.41 from 0.4. 

• This only used 1 of 13 data sets informing Dittus Bolter 
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Joint Samples for the 
Parameters 

• Uncertainty range is similar 

• Bayesian analysis indicates correlations 
among parameters 

• If lead coefficient increases, Reynold’s 
exponent must decrease 

• Defines a 3-D surface indicating 
combinations of parameters that best match 
the data 
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Effect on Predicted Maximum 
Fuel Temperature 

• Uniform (“expert” opinion) and 
Bayes Marginal have different 
shape but roughly same 95% 
uncertainty range. 

• Bayes Joint shows the impact of 
recognizing correlation between 
the parameters 

• The final uncertainty is roughly  
5 degrees versus 40 degrees 

• Predicted maximum fuel temperature with COBRA-TF (power 
from neutronics held constant) 

 

 

 

 

 

 

 

 

 

• Bayesian methods give a way to continually make better use of 
available data to inform models. 
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Calibration for Dittus-Boelter 

• Improved process, based on experimental data, to compute 
parameter distributions. 

• More defensible than expert opinion. 

• New experimental data can be easily incorporated to improve the 
accuracy of the new calibrated correlation. 

Parameter 1 
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Uncertainty Quantification 

• What? Determine variability, distributions, statistics of code outputs, given 
uncertainty in input factors (“error bars” or impact due to parameter uncertainty) 

• Why? Assess likelihood of typical or extreme outcomes.  Given input 
uncertainty… 
– Determine mean or median performance of a system 

– Assess variability in model response 

– Find probability of reaching failure/success criteria (reliability metrics) 

– Assess range/intervals of possible outcomes 

• V&V, QMU: assess how close uncertainty-endowed code predictions are to 
– Experimental data  

(validation, is model sufficient for  
the intended application?) 

– Performance expectations or limits  
(quantification of margins and  
uncertainties; QMU) 
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Prevalent UQ Method:  
Random Sampling 

• Assume distributions on each of the n uncertain input variables 

• Sample from each distribution and pair into N samples 

• Run the simulation model for each of the N samples 

• Use results ensemble to build up a distribution for each of the m outputs 

 

N realizations of Y 

Simulation  

Model 

 

Output  

Distributions N samples of X 

Output 1 

Output 2 

Input   

Distributions 

• sample mean 

 

 

• sample variance 

 

 

 

• full PDF(probabilities) 
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Selected UQ Approaches 

• Sampling: robust, understandable, can require 
many samples  
(Monte Carlo, LHS, importance) 

• Reliability methods: efficient optimization search  
to find behaviors or failure modes  
(mean value, MPP, FORM, SORM) 

• Stochastic expansions: highly efficient on 
smooth responses (tailored surrogates: 
polynomial chaos, stochastic collocation) 

• Other: interval estimation, evidence theory, 
mixed aleatory/ epistemic  

 

• All can be adaptive, surrogate-enhanced to be 
efficient on costly simulation models 
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Coupled Code UQ Study 

• Conducted sampling-based UQ study with coupled 
Insilico/COBRA-TF 

• Used down-selected parameters from earlier sensitivity study: 

1. Beta - turbulent mixing in CTF 

2. D.B. – Dittus Boelter single phase wall heat transfer 

3. MCA – McAdams wall friction 

4. Gridloss – Pressure loss coefficient for the grid spacers 

5. Xsec – cross sections 

6. Kcond – fuel thermal conductivity 

7. Hgap – Gap conductivity model 
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UQ: k-eff 

Cross section uncertainty dominates 
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UQ: Maximum Pin Power 

Gap Conductivity dominates 
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UQ: Maximum Fuel Temperature 

Gap conductivity dominates 

Note gap 

conductivity is not 

Gaussian; care in 

assuming 
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Making simulation credible 

• Ask critical questions of theory, experiments, simulation to 
understand simulation credibility 

• Use processes and tools that ensure quality and rigor:  
software quality, verification, validation 

• Dakota parametric studies can help with model development and 
analysis: 
– Sensitivity: screen for model development or UQ 

– Calibration: help accurate characterize input parameters 

– Uncertainty quantification: understand total variability in outputs 

– Other: optimization, verification, validation 

• Enable scientific discovery, engineering and policy decisions 
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