Credible Simulation, Emphasizing, Sensitivity, Uncertainty, and Calibration

Brian Adams and Vince Mousseau
Sandia National Laboratory

June 19, 2015
Credible Simulation, Emphasizing Sensitivity, Uncertainty, and Calibration

Brian Adams Vince Mousseau

CASL Summer Student Workshop
June 19, 2015
Goals

• Reflect on components of simulation credibility

• Understand benefits of automated parametric analysis: sensitivity analysis, uncertainty quantification, and model calibration

• See concrete examples with CASL progression problem 6, modeled with VERA Core Simulator:
 – Sensitivity: determine most influential parameters
 – Calibration: tune closure models to experimental data
 – Uncertainty: determine effect of parametric uncertainty
Scenario: CASL Progression Problem 6

- Single PWR assembly, hot full power, 1300 ppm boron
- Decision maker requests predictions, with error bars, for steady-state quantities of interest (QOI):
 - reactivity
 - maximum pin power
 - maximum fuel temperature
- Analyst assesses relevant phenomena; simulates with CASL’s VERA CS, coupling:
 - Insilico (later MPACT) for neutronics
 - COBRA-TF for thermal-hydraulics and fuel (later Peregrine for fuel)

- Is the simulation is sufficiently accurate to inform decisions?
- If not, where should resources be invested?
- How can sensitivity, calibration, and uncertainty analysis help?
Expectations of the accuracy of scientific simulations vary.

Who are you trying to convince?

- Code developers
- Analysts
- The customer
- The public

Expectations of Quality

- My job
- My employer’s reputation
- My paycheck
- Your paycheck

- I’d bet X on the result; X=…
- Uncertainty Quantification
- Error bars on simulation results
- Result converges with refinement
- Mesh refinement
- Eyeball norm
- Trends are reasonable
- Result is plausible
- Result is not ridiculous
- Code returns a result
Simulation relies on a modeling process:

- Reality (observed or postulated)
- Theory or explanation
- Conclusions
- Data
- Computation model
- Model solution
- Software implementation
- Discretization/solution scheme
- Code
- Direct analysis
- Compare/interpret
- Run simulation
- Update understanding
- Simplifying assumptions
- Abstract/quantify
- Computational analysis
Prediction with a simulation code is easy, right?

- **Limited** physical data (observational or experimental)
- **Limited** simulations (high computational demands…)
- **Imperfect** computational models (missing physics, etc.)
- **Under-resolved** approximations or numerics
- **Unknown** model parameters and boundary conditions
- **Imperfect** humans
- We want to *extrapolate* to conditions beyond validation regime…

Do you acknowledge strengths and weaknesses of your computational results?
Effective Use of Simulations

- Intended use should dictate simulation quality (PCMM)
- Account for and represent myriad uncertainty sources

Initial predictive capability maturity assessment for COBRA-TF

PDF Error
Prediction Error

PDF Error
Numerical Method Error

PDF Error
Parameter Variability

PDF Error
Modeling Error

Credit: François Hemez

CASL-U-2015-0194-000
Systematic Way to Address These Challenges

- **Software quality**: must be engineered in from the start: requirements, revision control, testing, documentation

- **Code verification**: does the implementation of an algorithm exhibit the properties expected from numerical analysis, e.g., conserves mass, converges second order?

- **Solution verification**: is computed solution correct for the problem of interest? Convergence to correct answer, at correct rate (order), as model is refined.
Systematic Way to Address These Challenges

• **Validation**: Are the model and equations right for the intended application? If not, what needs improvement?

Validation is ultimately a quantitative comparison with data, accounting for uncertainty.
Dakota: Software Delivery Vehicle for CASL VUQ Algorithms

- Apply sensitivity analysis, UQ, optimization, and calibration to computational models
- Facilitate design trade-offs, V&V, QMU, risk-based decision making

- Extensive algorithm toolbox
- Non-intrusive iterative systems analysis
- Parallel computing: desktop to HPC
- Simulation management

Included with VERA, or download from http://dakota.sandia.gov/
Parametric Analysis

- Automated sensitivity, calibration, or uncertainty analyses can be helpful at various stages of code maturity.
- However, some level of software quality, verification, and validation is required: otherwise iterative analysis can hide bugs, insufficient numerical methods, etc.
- To use Dakota, need a “run-ready” model:
 - Parameters must be accessible for programmatic adjustment; may not be appropriate to expose in user input.
 - Analysis workflow must be automated and robust to parameter variations.
 - Quantities of interest must be accessible.
- For a few key CASL cases, this work has been done.
What is a “Parameter”?

What might we want to parameterize in a model?

• physics/science parameters; closure laws, rate constants
• statistical variation, inherent randomness
• model forms / accuracy
• material properties (fluids, solids)
• manufacturing quality / tolerances
• operating environment, interference, e.g., reactor operating conditions
• initial, boundary conditions; forcing
• geometry / structure / connectivity
• Input data, e.g., cross section libraries, chemical reactions DBs
• numerical accuracy (mesh, solvers); approximation error
Decomposing QoI Yields Parameters Per Phenomenon

Validation Pyramid

3-D Fuel Temperature

- Fuel temp.
- Gap cond.
- Heat removal
- Subcooled boiling
- Moderator density
- Fission heat

Density
- Heat capacity
- Conduction

Specific heat
- Convection
- Radiation

Cross flow
- Single phase heat trans.
- Spacer loss coeff.
- Latent sensible heat
- Surface effects
- Bubble drag

Boron density
- Energy per fission

Decompose QoI into its component pieces
Why Perform Sensitivity Analysis?

• What? Understand code output variations as input factors vary

• Why? Identify most important variables and their interactions
 – Ranking/screening: Identity the most important variables, down-select for further UQ or optimization analysis
 – Provide a focus for resources
 • Data gathering and model development
 • Code development
 • Uncertainty characterization
 – Identify key model characteristics: smoothness, nonlinear trends, robustness

• Secondarily:
 – Identify code and model issues (robustness)
 – Reuse designs to construct surrogate models
Selected Approaches to Global Sensitivity Analysis

- Local derivatives or sensitivities
- Univariate or joint parameter studies
- **Global methods: sample designs spanning input space**
 - Sampling: Monte Carlo, Latin hypercube, Quasi-MC, CVT
 - DOE/DACE: factorial, orthogonal arrays, Box-Behnken, CCD
 - Morris one-at-a-time
- **Typical analysis results for responses**
 - Simple and partial (including rank) correlation coefficients
 - Regression and resulting coefficients
 - Variance-based decomposition
 - Importance factors
 - Scatter plots
Sensitivity Studies with VERA CS

• Mousseau, Hooper, Belcourt “top-down” approach with Insilico/COBRA-TF to identify most important parameters for UQ, possibly later model improvements

• Based on QOI, identified key equations and related closure laws, e.g., gap conductivity, fuel temperature models, and added factors A, B:

\[A \times F_w(Re) + B(x, t) \]

• Typical for these studies: \(A \in [0.95, 1.05] \) \(B(x, t) = 0 \), but can also use \(B(x,t) \) to perform numerical verification

• Also included cross sections, axial mesh spacing

• Basic centered parameter study: each parameter at nominal, positive increment, negative increment

• Sometimes for initial studies, a coarse down-select suffices
Reactivity Sensitivity

<table>
<thead>
<tr>
<th>Variable Description</th>
<th>Multiplier</th>
<th>Percent Difference</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Sections</td>
<td>NA</td>
<td>1.283</td>
<td>Neutronics</td>
</tr>
<tr>
<td>Cross Sections</td>
<td>NA</td>
<td>-1.163</td>
<td>Neutronics</td>
</tr>
<tr>
<td>Gap Conductivity</td>
<td>0.5</td>
<td>-0.422</td>
<td>Fuel</td>
</tr>
<tr>
<td>Gap Conductivity</td>
<td>1.5</td>
<td>0.152</td>
<td>Fuel</td>
</tr>
<tr>
<td>Fuel Temperature</td>
<td>0.95</td>
<td>0.081</td>
<td>Coupling</td>
</tr>
<tr>
<td>Fuel Temperature</td>
<td>1.05</td>
<td>-0.080</td>
<td>Coupling</td>
</tr>
<tr>
<td>Fuel Conductivity</td>
<td>0.9</td>
<td>-0.073</td>
<td>Fuel</td>
</tr>
<tr>
<td>Fission Heat</td>
<td>1.05</td>
<td>-0.062</td>
<td>Coupling</td>
</tr>
<tr>
<td>Fission Heat</td>
<td>0.95</td>
<td>0.061</td>
<td>Coupling</td>
</tr>
<tr>
<td>Fuel Conductivity</td>
<td>1.1</td>
<td>0.059</td>
<td>Fuel</td>
</tr>
<tr>
<td>Moderator Density</td>
<td>1.05</td>
<td>-0.035</td>
<td>Coupling</td>
</tr>
<tr>
<td>Mesh spacing</td>
<td>NA</td>
<td>0.002</td>
<td>Numerical</td>
</tr>
<tr>
<td>Moderator Density</td>
<td>0.95</td>
<td>-0.017</td>
<td>Coupling</td>
</tr>
<tr>
<td>Wall Heat Transfer</td>
<td>0.95</td>
<td>-0.013</td>
<td>Thermal Hydraulics</td>
</tr>
<tr>
<td>Moderator Temperature</td>
<td>1.05</td>
<td>-0.010</td>
<td>Coupling</td>
</tr>
<tr>
<td>Moderator Temperature</td>
<td>0.95</td>
<td>0.009</td>
<td>Coupling</td>
</tr>
<tr>
<td>Wall Heat Transfer</td>
<td>1.05</td>
<td>0.009</td>
<td>Thermal Hydraulics</td>
</tr>
</tbody>
</table>

Fuel and Coupling are “important”
Max Pin Power Sensitivity

<table>
<thead>
<tr>
<th>Variable Description</th>
<th>Multiplier</th>
<th>Percent Difference</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap Conductivity</td>
<td>0.5</td>
<td>-2.150</td>
<td>Fuel</td>
</tr>
<tr>
<td>Gap Conductivity</td>
<td>1.5</td>
<td>0.905</td>
<td>Fuel</td>
</tr>
<tr>
<td>Cross Sections</td>
<td>NA</td>
<td>0.815</td>
<td>Neutronics</td>
</tr>
<tr>
<td>Fuel Conductivity</td>
<td>0.9</td>
<td>-0.493</td>
<td>Fuel</td>
</tr>
<tr>
<td>Fuel Conductivity</td>
<td>1.1</td>
<td>0.411</td>
<td>Fuel</td>
</tr>
<tr>
<td>Fission Heat</td>
<td>0.95</td>
<td>0.327</td>
<td>Coupling</td>
</tr>
<tr>
<td>Fission Heat</td>
<td>1.05</td>
<td>-0.315</td>
<td>Coupling</td>
</tr>
<tr>
<td>Fuel Temperature</td>
<td>0.95</td>
<td>0.280</td>
<td>Coupling</td>
</tr>
<tr>
<td>Fuel Temperature</td>
<td>1.05</td>
<td>-0.260</td>
<td>Coupling</td>
</tr>
<tr>
<td>Mesh Spacing</td>
<td>NA</td>
<td>0.250</td>
<td>Numerical</td>
</tr>
<tr>
<td>Cross Sections</td>
<td>NA</td>
<td>-0.228</td>
<td>Neutronics</td>
</tr>
<tr>
<td>Moderator Density</td>
<td>1.05</td>
<td>-0.073</td>
<td>Coupling</td>
</tr>
<tr>
<td>Wall Heat Transfer</td>
<td>0.95</td>
<td>-0.072</td>
<td>Thermal hydraulics</td>
</tr>
<tr>
<td>Wall Heat Transfer</td>
<td>1.05</td>
<td>0.053</td>
<td>Thermal Hydraulics</td>
</tr>
<tr>
<td>Moderator Density</td>
<td>0.95</td>
<td>0.052</td>
<td>Coupling</td>
</tr>
<tr>
<td>Moderator Temperature</td>
<td>0.95</td>
<td>0.038</td>
<td>Coupling</td>
</tr>
<tr>
<td>Moderator Temperature</td>
<td>1.05</td>
<td>-0.035</td>
<td>Coupling</td>
</tr>
<tr>
<td>Turbulent Mixing of Liquid Mass</td>
<td>1.05</td>
<td>0.006</td>
<td>Thermal Hydraulics</td>
</tr>
<tr>
<td>Turbulent Mixing of Liquid Mass</td>
<td>0.95</td>
<td>0.005</td>
<td>Thermal Hydraulics</td>
</tr>
<tr>
<td>Turbulent Mixing of Liquid Momentum</td>
<td>1.05</td>
<td>0.002</td>
<td>Thermal Hydraulics</td>
</tr>
<tr>
<td>Turbulent Mixing of Liquid Energy</td>
<td>1.05</td>
<td>0.002</td>
<td>Thermal Hydraulics</td>
</tr>
<tr>
<td>Turbulent Mixing of Liquid Energy</td>
<td>0.95</td>
<td>0.001</td>
<td>Thermal Hydraulics</td>
</tr>
</tbody>
</table>
Max Fuel Temp Sensitivity

<table>
<thead>
<tr>
<th>Variable Description</th>
<th>Multiplier</th>
<th>Percent Difference</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap Conductivity</td>
<td>0.5</td>
<td>21.423</td>
<td>Fuel</td>
</tr>
<tr>
<td>Gap Conductivity</td>
<td>1.5</td>
<td>-7.445</td>
<td>Fuel</td>
</tr>
<tr>
<td>Fuel Conductivity</td>
<td>0.9</td>
<td>6.807</td>
<td>Fuel</td>
</tr>
<tr>
<td>Fuel Conductivity</td>
<td>1.1</td>
<td>-5.405</td>
<td>Fuel</td>
</tr>
<tr>
<td>Fission Heat</td>
<td>1.05</td>
<td>4.436</td>
<td>Coupling</td>
</tr>
<tr>
<td>Fission Heat</td>
<td>0.95</td>
<td>-4.354</td>
<td>Coupling</td>
</tr>
<tr>
<td>Cross Sections</td>
<td>NA</td>
<td>0.739</td>
<td>Neutronics</td>
</tr>
<tr>
<td>Wall Heat Transfer</td>
<td>0.95</td>
<td>0.610</td>
<td>Thermal Hydraulics</td>
</tr>
<tr>
<td>Wall Heat Transfer</td>
<td>1.05</td>
<td>-0.495</td>
<td>Thermal Hydraulics</td>
</tr>
<tr>
<td>Fuel Temperature</td>
<td>0.95</td>
<td>0.254</td>
<td>Coupling</td>
</tr>
<tr>
<td>Fuel Temperature</td>
<td>1.05</td>
<td>-0.236</td>
<td>Coupling</td>
</tr>
<tr>
<td>Cross Sections</td>
<td>NA</td>
<td>-0.198</td>
<td>Neutronics</td>
</tr>
<tr>
<td>Moderator Density</td>
<td>1.05</td>
<td>-0.106</td>
<td>Coupling</td>
</tr>
<tr>
<td>Mesh Spacing</td>
<td>NA</td>
<td>0.050</td>
<td>Numerical</td>
</tr>
<tr>
<td>Moderator Density</td>
<td>0.95</td>
<td>0.085</td>
<td>Coupling</td>
</tr>
<tr>
<td>Moderator Temperature</td>
<td>0.95</td>
<td>0.034</td>
<td>Coupling</td>
</tr>
<tr>
<td>Moderator Temperature</td>
<td>1.05</td>
<td>-0.032</td>
<td>Coupling</td>
</tr>
<tr>
<td>Turbulent Mixing of Liquid Mass</td>
<td>0.95</td>
<td>0.005</td>
<td>Thermal Hydraulics</td>
</tr>
<tr>
<td>Turbulent Mixing of Liquid Momentum</td>
<td>1.05</td>
<td>0.002</td>
<td>Thermal Hydraulics</td>
</tr>
<tr>
<td>Turbulent Mixing of Liquid Mass</td>
<td>1.05</td>
<td>-0.001</td>
<td>Thermal Hydraulics</td>
</tr>
<tr>
<td>Turbulent Mixing of Liquid Energy</td>
<td>0.95</td>
<td>0.001</td>
<td>Thermal Hydraulics</td>
</tr>
</tbody>
</table>
Model Calibration

- **Calibration**: use data to improve characterization of input parameter values, by maximizing agreement between simulation and experiment (inverse modeling)
 - Tune models to match specific scenarios
 - Make them more robust to predict a range of outcomes
- **Deterministic calibration**: seek a single set of parameter values that best match the data, typically in the two-norm

\[SSE(\theta) = \sum_{i=1}^{n} [(y_i - s_i(\theta))^2 = \sum_{i=1}^{n} [r_i(\theta)]^2 \]

 - Initial iterate \(\theta_0 \), nonlinear optimization, updated values \(\theta \)
- **Bayesian calibration**: combine prior parameter distributions with data to update the statistical characterization of the parameters

 - Prior, statistical inference (MCMC), posterior
- **Calibration is not validation**! Separate data must be used to assess whether a calibrated model is valid.
Bayesian Calibration to Heat Transfer Closure Law

- Use data to refine predictions with COBRA-TF
- Nusselt number (Nu): ratio of convective to conductive heat transfer normal the boundary
- Instead of fixed closure law coefficients in Dittus-Boelter, make them variable parameters θ (for expert users only):

$$Nu = 0.023 \, Re^{0.8} \, Pr^{0.4} = \theta_1 \, Re^{\theta_2} \, Pr^{\theta_3}$$

- In a typical sensitivity or uncertainty study, might use expert opinion to say

$$\theta_1 \in [0.0, 0.046] \quad \theta_2 \in [0.0, 1.6] \quad \theta_3 \in [0.0, 0.8]$$

- Dittus Boelter was based on 13 data sets, this analysis is based on one, Morris and Whitman, “Heat Transfer for Oils and Water in Pipes,” *Industrial and Engineering Chemistry, Vol. 20, No. 3*, pp.234-240, 1928.
- Used delayed rejection adaptive metropolis for Bayesian calibration with this data
Updated Parameter Distributions

- Lead coefficient θ_1 now lower: 0.004 from 0.023.
- Reynolds exponent θ_2 now larger: 0.99 from 0.8
- Prandtl exponent θ_3 slightly larger: 0.41 from 0.4.
- This only used 1 of 13 data sets informing Dittus Bolter
Joint Samples for the Parameters

- Uncertainty range is similar
- Bayesian analysis indicates correlations among parameters
- If lead coefficient increases, Reynold’s exponent must decrease
- Defines a 3-D surface indicating combinations of parameters that best match the data
Effect on Predicted Maximum Fuel Temperature

- Predicted maximum fuel temperature with COBRA-TF (power from neutronics held constant)

- Uniform ("expert" opinion) and Bayes Marginal have different shape but roughly same 95% uncertainty range.

- Bayes Joint shows the impact of recognizing correlation between the parameters

- The final uncertainty is roughly 5 degrees versus 40 degrees

- Bayesian methods give a way to continually make better use of available data to inform models.
Calibration for Dittus-Boelter

- Improved process, based on experimental data, to compute parameter distributions.
- More defensible than expert opinion.
- New experimental data can be easily incorporated to improve the accuracy of the new calibrated correlation.
Uncertainty Quantification

- **What?** Determine variability, distributions, statistics of code outputs, given uncertainty in input factors (“error bars” or impact due to parameter uncertainty)

- **Why?** Assess likelihood of typical or extreme outcomes. Given input uncertainty…
 - Determine mean or median performance of a system
 - Assess variability in model response
 - Find probability of reaching failure/success criteria (reliability metrics)
 - Assess range/intervals of possible outcomes

- **V&V, QMU:** assess how close uncertainty-endowed code predictions are to
 - Experimental data (validation, is model sufficient for the intended application?)
 - Performance expectations or limits (quantification of margins and uncertainties; QMU)
Prevalent UQ Method: Random Sampling

- Assume distributions on each of the n uncertain input variables
- Sample from each distribution and pair into N samples
- Run the simulation model for each of the N samples
- Use results ensemble to build up a distribution for each of the m outputs

- **sample mean**
 \[\overline{T} = \frac{1}{N} \sum_{i=1}^{N} T(u^i) \]

- **sample variance**
 \[T^{\sigma^2} = \frac{1}{N} \sum_{i=1}^{N} \left[T(u^i) - \overline{T} \right]^2 \]
Selected UQ Approaches

- **Sampling**: robust, understandable, can require many samples (Monte Carlo, LHS, importance)
- **Reliability methods**: efficient optimization search to find behaviors or failure modes (mean value, MPP, FORM, SORM)
- **Stochastic expansions**: highly efficient on smooth responses (tailored surrogates: polynomial chaos, stochastic collocation)
- **Other**: interval estimation, evidence theory, mixed aleatory/epistemic
- **All can be adaptive, surrogate-enhanced to be efficient on costly simulation models**

\[
\begin{align*}
\mu_T &= T(\mu_u) \\
\sigma_T &= \sum_i \sum_j \text{Cov}_u(i, j) \frac{dg}{du_i}(\mu_u) \frac{dg}{du_j}(\mu_u)
\end{align*}
\]

\[
\text{minimize } u^T u \\
\text{subject to } T(u) = T_{\text{critical}}
\]

\[
R = \sum_{j=0}^{P} \alpha_j \Psi_j(\xi)
\]
Coupled Code UQ Study

- Conducted sampling-based UQ study with coupled Insilico/COBRA-TF
- Used down-selected parameters from earlier sensitivity study:
 1. Beta - turbulent mixing in CTF
 2. D.B. – Dittus Boelter single phase wall heat transfer
 3. MCA – McAdams wall friction
 4. Gridloss – Pressure loss coefficient for the grid spacers
 5. Xsec – cross sections
 6. Kcond – fuel thermal conductivity
 7. Hgap – Gap conductivity model
Cross section uncertainty dominates
UQ: Maximum Pin Power

Gap Conductivity dominates
UQ: Maximum Fuel Temperature

Gap conductivity dominates

Note gap conductivity is not Gaussian; care in assuming

Gap conductivity dominates
Making simulation credible

• Ask critical questions of theory, experiments, simulation to understand simulation credibility

• Use processes and tools that ensure quality and rigor: software quality, verification, validation

• Dakota parametric studies can help with model development and analysis:
 – Sensitivity: screen for model development or UQ
 – Calibration: help accurate characterize input parameters
 – Uncertainty quantification: understand total variability in outputs
 – Other: optimization, verification, validation

• Enable scientific discovery, engineering and policy decisions