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Introduction In order to evaluate the lift and drag forces, external control forces are ¥ oee T 00 o - -
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The understanding of turbulent two-phase flows i1s very important due to . s q " 1 based S dited 3 60£02 E 150
the widespread occurrence of this phenomenon in natural and engineering Ll _rorees can up a}te ,t CIMSCIVES — Dased on - d - simplic MOdIHe s e || g
: : proportional-integral-derivative (PID) controller: g " =
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simulation (DNS) coupled with interface tracking methods (ITM) stands where CF stands for control force and the CF; is the historical average of the O T wm e o w0 2w w0 sme 10000
out as a valuable tool to compliment and expand our ability to understand force. The constants used for lift and drag control forces’ expressions are Timestep Timestep
two-phase flow phenomenon. listed in following table.
1.0E-05 The bubble relative velocity and local shear rate measured in the flow with prescribed shear rate of 2.0 s (left).
Advanced data analysis techniques are highly desired for efficiently 5.06-06
rocessing large-scale two-phase simulations in different geometries. The . . .
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present work includes:
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» A new capability developed which can estimate the drag and lift
coefficients of the single bubble in uniform shear flows;

» Development of the bubble tracking capability for interface tracking
simulations;

» Advanced extraction algorithms to collect detailed information
regarding the individual bubble behaviors, such as location, velocity,
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local liquid flow field, and even bubble deformability; #

. . . Velocity Magnitude L

» Some results from current simulations for pressurized water reactor 2.00 0.70 T L] 0.1 0.2 A

0.60 —e—PHASTA

(PWR) subchannel and progress in new computational tools 150
development as well.

Numerical Methods

For our simulations we utilize PHASTA code, which i1s a parallel,
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The unstructured mesh for a reactor Several bubbles are placed in the domain based on
subchannel the void fraction required.
030 A set of screenshots showing the detailed

020 process of bubbles moving through the
single subchannel due to advection by the
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hierarchic, higher-order accurate (from the 2nd to the 5th order accuracy, W e e 0 200 40 600 800 1000 T \ | | mean flow and buoyancy force.
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ransient analysis fl lver h incompressible and compressible). ¢ rag coricIen
transie .t analys s ow solver (both incompressible and compressible) different bubble Reynolds number with o
Governing equations: Tomiyama’s correlation .

* Mass Conservation: ui,j =0 Thomas, A. M., Fang, J., Feng, J., & Bolotnoy, I. A. (2015). Estimation of shear-induced lift force in : . | ] TR A 3
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JoJ L L Bubble Tracking Capability and Information Extraction The initial profile of a 262-bubble subchannel case with bubble ID’s :
* Continuum Surface Tension (CST) model of Brackbill et al. (1992) & -ap y P /
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Significant effort has been dedicated 1n
developing the new capability of PHASTA
to distinguish and track individual bubbles,
and this new function 1s very crucial in the
multi-bubble simulations.

Level-Set approachis implemented for the
two-phase simulations in PHASTA, which is
actually the signed distance field described

by:
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Three time averaged windows are shown iIn red,
green and blue. Viscous sub-layer (solid black) and

: ¢ - min{¢i} |¢min|
where x;, y;, and z;, are the coordinates of the D= Req log layer (dashed blac!<) are algo shown abOYe-
bubble center and R;is the radius; the interface is — 1 Law of Fhe wall an.aly81s ShOWIl. in the figure with
where ¢ = 0 ' N 7| Bubble ID dashed line results in the coefficients of B=5.8 and
[ Z 0.9 k=0.48 observed in the subchannel simulation
: . . o .
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© 2 e ’ s 02 o1 o o1 o2 o3 extracted for all the bubbles no longer a viable way due to prohibitive cost of disk access. To take full
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