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Modeling and simulation permeate all fields of science and engineering. In

nuclear engineering, numerical results generated by computer simulation codes

have long been used in making decisions about nuclear reactor design,

operation, and safety. In particular, comprehensive methodologies and

systematic processes have been developed, adopted, and applied to guide the

development of analytical tools and evaluate their adequacy for applications in

nuclear reactor safety analysis. Notable are the “Code Scaling, Applicability, and

Uncertainty” (CSAU) methodology, “Evaluation Model Development and

Assessment Process” (EMDAP), both developed by the U.S. Nuclear Regulatory

Commission (NRC) and “Predictive Capability Maturity Model” (PCMM)

developed by Sandia National Laboratory. However, due to lack of

data/evidence and the inherent risk associated with various nuclear engineering

processes, the assessment process becomes very rigorous and time consuming,

and when it comes to decision making its hard to answer in “Yes” or “No” if a

certain code is “good enough” to describe a particular application of interest.

This work describes an initial effort to develop and demonstrate a systematic,

formalized and computerized framework for quantification of reliability of a

simulation tool for (a given) nuclear reactor engineering or safety application. It

is noted that the present study is limited to “validation”, which is an important

component in PCMM along with other attributes considered in PCMM.

Introduction

Fuzzy logic and code maturity quantification

Governing factors and Membership function

Summary Remarks

Evaluation of assessment base

Assessment of entire knowledge base

Step 2 (Fuzzification) : Fuzzification helps in weighting the

evidence on the basis of expert knowledge.

This work presents a quantitative framework for assessing the maturity of a

simulation code. In essence, it provides an efficient methodology that assimilates

objective data (evidence) with subjective data (based on expert knowledge) for a

codes maturity quantification. This method integrates expert’s knowledge in the

framework by using fuzzy membership function. These membership functions

help in weighting all the evidence based on the of degree of confidence in their

truth value. These evidences are combined using different fuzzy operations to

obtain the total maturity function of the code for a specific application of interest.

This step assess the completeness of a particular layer in the validation pyramid on the basis of code bias

uncertainty, coverage and measurement uncertainty of all the experiments in that layer. The assessment

result gives a number y that represents the evaluation of the respective layer on a scale of 0 to 1 using all the

evidences that constitute the knowledge base of that layer. Steps of evaluation:

Step 1( Specification of input) : Crisp inputs, 𝑥𝐶, 𝑥𝐵 and 𝑥𝑀 for each validation test are specified.

In this section, we construct a maturity function that provides a graphical representation of the code’s

predictive capability over the entire range of operation of the application.

This work is performed for the U.S. Department of Energy’s

Consortium for Advanced Simulation of Light Water Reactors

(CASL) to support application of the Predictive Capability Maturity

Model to the CASL’s Virtual Environment for Reactor Applications

(VERA) codes
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Validation Pyramid : In lieu of full-scale plant

testing, a hierarchical approach is adopted for

code validation. A set of relevant separate-effect

tests (SET), mixed-effect tests (MET) and

integral-effect tests (IET) is used to construct a

validation pyramid. We assume that each layer

consist of a finite number of independent

experiments, that together describe the

knowledge base of that layer in the validation

hierarchy.

A fuzzy set can be defined as a set with fuzzy boundaries. Fuzzy logic is theory

of sets that calibrate obscurity or uncertainty. Unlike Boolean algebra that works

on binary logic (Truth or false, 0 or 1), fuzzy logic characterizes the data using

degree of membership. It provides a precise way of representing approximate

reasoning and imprecise information. A fuzzy set “A” of universe of discourse 𝑋,

with elements represented by 𝑥, is defined by its membership function (MF),

𝜇𝐴 𝑥 , as 𝜇𝐴 𝑥 : 𝑋 → [0,1]
where, 𝜇𝐴 𝑥 = 0, if 𝑥 does not belongs to A, 

𝜇𝐴 𝑥 = 1, if 𝑥 completely belongs to A, 

and   0 < 𝜇𝐴 𝑥 < 1, if x partially belongs A

Since its conception, fuzzy logic has find wide application in different areas of

engineering and science . There are several feature of fuzzy logic that makes it

suitable choice for developing a quantifiable framework for assessing the

reliability of simulation tools used in nuclear engineering :

 Fuzzy logic provides an efficient methodology for representing incomplete

knowledge and imprecise information using degree of belief or degree of

confidence in the truth value of the information.

 It can handle heterogeneity very well. Extraction of important information

from large amount of data is easier.

 Availability of large number of mathematical operation (min, max, product,

average, sum, etc.) makes it a very efficient tool for developing an expert

inference system.

 Simplicity and flexibility of fuzzy logic makes it possible to combine fuzzy

logic with other methodologies. e.g. Genetic fuzzy systems are fuzzy system

developed by combining fuzzy logic and genetic algorithms. Similarly,

neuro-fuzzy system are developed by combining fuzzy logic with neural

networks.

 CSAU, EMDAP and PCMM are all expert elicitation methodologies. Expert

judgement plays a critical rule at each level/stage of these methodologies.

Fuzzy logic provide a unique technique to codify the expert knowledge which

makes it very attractive tool for developing a quantifiable framework for

code’s maturity evaluation.

Scaling : Experiments used for validating the code are scaled version of the real

application. The relevance of these experiment to the real application is

determined on the basis of different scaling factors like material scaling, geometric

similarity and physics scaling. We assume that all experiments used in the

validation pyramid are of reactor prototypic level. Therefore, we do not consider

effect of scaling in this analysis.
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The fuzzified input variable corresponding to 𝑥𝐶𝑖,𝑥𝐵𝑖 and 

𝑥𝑀𝑖 are represented by 𝜇𝐶𝑖,𝜇𝐵𝑖 and 𝜇𝑀𝑖, respectively ( where i

is the experiment index) 

Step 3 (Rule) : 𝜋𝑖= 𝜇𝐶𝑖 .𝜇𝐵𝑖 .𝜇𝑀𝑖

Step 4 (Normalization):   𝑁𝑖 =
𝜋𝑖

𝜋1.𝜋2….𝜋𝑛

Step 5 (Defuzzification) : Defuzzification is performed 

according to the following rule –

𝑑𝑖 = 𝑁𝑖 . 𝜇𝑖
𝑚𝑖𝑛 𝑥𝐶𝑖 + 𝑥𝐵𝑖 + 𝑥𝑀𝑖

3

Step 6 (Summation) : Summation of the defuzzified output 

variable gives y,  𝑦 = 𝑑1 + 𝑑2 +⋯+ 𝑑𝑖+. . +𝑑𝑛
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Here, we consider three additional MF function in addition to the MFs

described in the previous sections: (1) MF for number of experiments,

𝜇𝑁: This MF is defined according to the number of experiments in its
constitutive layer, e.g. if the bottom layer consists of M experiments,

than 𝜇𝑁 for any experiment belonging to this layer would be (1/M).
(2) Based on the subjective knowledge about a particular type of

experiment (viz. SET or MET or IET), we assign weight to each type of

experiment using expert’s knowledge about the importance of that

experiment. Assumed membership values for each type of experiment

are: 𝜇𝑖𝑚𝑝 = 0.5 for IETs, 𝜇𝑖𝑚𝑝 = 0.3 for METs and 𝜇𝑖𝑚𝑝 = 0.2 for

SETs

Coverage : The range of applicability or coverage of a

particular application is decided on the basis of operating

range of its primary control parameters (like pressure, mass

flow rate and temperature). We assume that our application of

interest is governed by a single control parameter P.

Coverage ratio is defined by, 𝑥𝑐 =
𝑅𝐸𝑙−𝑅𝐸𝑢

𝑅𝐴𝑙−𝑅𝐴𝑢

here, 𝑅𝐸𝑙 and 𝑅𝐸𝑢 represents the lower and upper limit of P for

the experiment; 𝑅𝐴𝑙 and 𝑅𝐴𝑢 represents the lower and upper

limit of P for the application. Therefore, 𝑥𝑐 lies between 0 and

1, 0 when experiment does not lies in the range of experiment

and 1 when experiment covers the entire range of application.

Measurement Uncertainty: Code validation is based on the

comparison of code prediction and measurements. However,

due to instrumentation errors and limited resolution of

measurement technique, there is a finite measurement

uncertainty associated with each experiment. Experiments with

higher measurement uncertainty cannot be used for code

validation analysis. Confidence in the measurements is

expressed by a variable 𝑥𝑀 defined by, 𝑥𝑀 = 1 −𝑀𝑈
here, 𝑀𝑈 is the measurement uncertainty which is assumed to

lie between 0-100%. Hence, the variable 𝑥𝑀 lies between 0 and

1.

Bias Uncertainty: Bias uncertainty can be defined as the

statistical measure of the difference between code prediction

and measurement. If measurement uncertainty is small, bias

uncertainty is an adequate measure of the code deficiency.

Confidence in the code prediction is expressed by a variable

𝑥𝐵 defined by 𝑥𝐵 = 1 − 𝐵𝑈
here, BU is the bias uncertainty that is assumed to lie between

0-100%. Hence, the variable 𝑥𝐵 lies between 0 and 1.

(3) MF for Experiment Coverage, 𝜇𝑥𝑖 : This membership
function represents the coverage of an experiment. 𝑥𝑃
represent the entire range of operation of the application. It is

normalized to lie between 0 and 1. The MF, 𝜇𝑥𝑖 = 1 for all 𝑥𝑃
for which the application and experiment range coincide with

each other. This membership value is modified according to

the membership value of all other evidences (code bias,

measurement uncertainty, type and importance of experiment)

related to this experiment.

This Maturity function (𝜇𝑥𝑇) represents the

degree of confidence in the code’s

predictive capability over the entire

operating range of the application.

The modified MF (𝜇𝑥𝑖) of

all the experiments are

added to obtain a global

maturity function for the

application of interest.
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Evaluation of  each layer of Validation Pyramid

We can calculate value of y for each layer of the validation pyramid and obtain a quantitative measure of 

completeness of that layer.  
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