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Introduction

Tiamat is code coupling being developed in CASL as a tool for analysis of pellet-
cladding interaction (PCI).
Couples together the Bison-CASL fuel performance code with the COBRA-TF
thermal hydraulics code and either MPACT or Insilico neutronics (we utilize Insilico)
to identify fuel rods and assemblies of interest for further PCI calculations.
Tiamat has previously used Picard iteration for this coupling, which is attractive
primarily for its simplicity of implementation, though it has several drawbacks:

— Relatively slow rate of convergence.

— Necessity of ad hoc chosen damping factors to obtain acceptable performance.

Anderson acceleration is an alternative solution method which has been seen to be
faster converging and more numerically robust than Picard in several fields.

In this work, we implement Anderson acceleration in Tiamat and evaluate its
potential as an alternative to Picard iteration.

Tiamat Code Coupling

Participating codes:

Bison-CASL is transient and must model the heating of a fuel rod from zero power to full

COBRA-TF (CTF) — Thermal hydraulic simulation code developed at PSU. Models
coolant conditions using two-fluid, three-field representation of two-phase flow.
Insilico — Neutronics solver from the VERA code suite. Uses XSProc to generate
multigroup cross sections and solves S, or SP, form of the transport equation.
Bison-CASL — Single-rod fuel performance code. Models mechanical, thermal, and
chemical properties of an individual fuel rod.

Data Transfer Kit (DTK) — Handles transfers of data between codes, accounting for
parallel communication, unit conversions, coordinate orientation, etc.

power. This is performed in Tiamat according to the following process:

1.

Obtain an estimate of hot full power (HFP) conditions. Several ways to do this:

a. Perform one or more iterations of stand-alone CTF+Insilico.

b. Start from data saved in a restart file.

c. A combination of a. and b.

Model transition from cold zero power (CZP) to hot zero power (HZP) in Bison.
Bison is run transient for 100 seconds, linearly increasing clad surface temperature
from 20 to 293 C.

Model transition from HZP to HFP in Bison. Bison is run transient for 48 hours,
linearly increasing clad surface temperature and power from HZP conditions to the
estimated HFP conditions.

Solve the fully-coupled problem at HFP for one or more time steps.
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To this point, the fully-coupled HFP problem has
been solved by Picard iteration (also known as
fixed-point iteration or successive substitution).
Utilizes two variations of Picard iteration:

- Block Jacobi: Alternate between phase of
solving of all applications and phase of
transferring updated coupling data.

- Block Gauss-Seidel: Solve individual
applications sequentially and transfer updated
coupling data as soon as it is obtained.
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Anderson Acceleration

Acceleration method for solving the fixed-point problem u = G(u).

Stores at most m (user specified number) previous function evaluations and
computes new iterate as the linear combination of these with minimal linearized
residual:
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where m, = min{m,n}, and {«'"'} solves the constrained least-squares problem:
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The algorithm with any particular m is called Anderson-m (Anderson-0 is Picard),
and S is called the mixing parameter.
No derivative information or linear iterations required, giving an advantage over
Newton-like methods.
Assuming G is relatively expensive, the dominant computational cost per iteration is
the evaluation of G (same as Picard).
Main added cost over Picard is storage of additional vectors; Anderson-m requires
the storage of at most 2(m+1) vectors.
Theoretical background:
- Anderson acceleration may be viewed as a sort of quasi-Newton method [Fang
and Saad, 2009].
— Anderson acceleration is “essentially equivalent” to GMRES iteration for linear
problems [Walker and Ni, 2011].
- Anderson acceleration is locally r-linearly convergent if G is nonlinear and
contractive near the solution [Toth and Kelley, 2015].
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Figure 1: Bison-CASL ramp to HFP
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Fixed-Point Map Definitions

To implement Anderson acceleration for this problem, we need to define the fixed-point
map G to which it will be applied.
G is formulated in such a way that Picard iteration can be written as u.,, = G(u,).
We pose the problem as a fixed-point problem in terms of transferred data.
Tiamat includes 5 data transfers:
- CTF to Bison: Surface clad temperatures T, from CTF are transferred to Bison.
- Bison to CTF: Heat flux q"" from Bison is transferred to CTF.
— CTF to Insilico: Coolant temperatures T,, and densities o, from CTF are
transferred to Insilico
- Bison to Insilico: Fuel temperatures T; from Bison are transferred to Insilico.
- Insilico to Bison: Power density q from Insilico is transferred to Bison.
Indicate source/target data by a superscript (or subscript for heat flux) indicating the
code: B for Bison, C for CTF, and | for Insilico.
In this work, we consider Anderson acceleration applied to two fixed-point maps:

Intermediate Map
e Given T}, T}, pl,, .7, and ¢".

Gauss-Seidel Map

e Given T}, T}, pl,, and T

e Using, 7. T and p! solve neutronics. e Using, 71, T! and p! solve neutronics.
forrw w > T w

e Transfer ¢/ — ¢P. e Using T and ¢?, solve Bison.

e Using T'F and ¢?, solve Bison. e Transfer ¢, — qft and T — T7.

e Transfer ¢, — ¢/ and TP — T7. e Transfer ¢! — G".

e Using ¢/, solve CTF. e Using ¢/. solve CTF.

C_ Pl O Al C _, 7B _ i}
o Transfer ) — T, pyy = py» and T7 — T77. e Transfer TS — T p¢ — pl,and T¢ — T5.

T all _
o o iy ¥
Gas 7= ﬁ}v T}i T}i
w P Gint | pw | =] Pu

T B B —
AN || o
q° 7"

The Intermediate map falls in-between block Gauss-Seidel and block Jacobi.
In current form of Tiamat, applications exist in independent processor space (Figure 2).
- For the Gauss-Seidel map, applications must be solved in series.
- For the Intermediate map, Insilico and Bison are solved simultaneously.
The Intermediate map couples applications more loosely, so higher iteration counts should
be expected. More efficient processor utilization may still result in lower run times.

Numerical damping of certain fields is necessary to obtain convergence for Picard iteration.

Given damping factor 0< a <1, set the component of G corresponding to the field x to the
weighted sum (1 — a)x + ax rather than X.

We apply a separate damping to temperatures, densities, and powers.

The mixing parameter in Anderson applies the same damping to each exposed field.

Global Comm (usually MPI_COMM_WORLD)

CTF |! Insilico

MOOSE MultiApp (Bison-CASL)

DTK:CTF< = Insilico

DTK: Insilico < ->MOOSE MultiApp

DTK: CTF <->MOOSE MultiApp

Figure 2: MP| communicator layers in Tiamat

Scaling of Variables

Problem: The residual vector being exposed to Anderson acceleration consists of physical

quantities which may be on vastly different orders of magnitude.

« Larger quantities may dominate the solution of the least-squares problem.

* Poor linear combination coefficients for smaller magnitude quantities may slow overall
rate of convergence.

Solution: Scale the variables that are exposed to Anderson acceleration, i.e. instead of
solving u = G(u), consider the scaled variables v = Mu, where M is a diagonal scaling matrix,
and solve the scaled fixed-point problem v = MG(M-v).

For the Gauss-Seidel map, the exposed transfers are temperatures and densities, and we
scale these by their initial value, i.e. M;; = uy;! where uj is the initial iterate.

For the Intermediate map, power density is another exposed quantity, and these can be zero
(e.g. in non-fuel pins). For this map, temperatures and densities are scaled as above, and
powers are scaled by the local average power within the owning processor (or the scaling
factor is set to 1 if the local average power is 0).

Solver Implementation

« We utilize the Anderson acceleration solver in the Trilinos nonlinear solver package

NOX.

« Tiamat heavily leverages the PIKE (Physics Integration Kernels) software package

for solvers, observers, status tests, etc., so a wrapper class was created which
implements the NOX solver as a PIKE solver.

« The NOX solver is used to converge the data transferred between applications, but

PIKE determines global convergence of the coupled system. The following criteria
are required to be satisfied:
- CTF: Change in max coolant and clad temperatures less than some tolerance.
- Bison: Change in the max fuel temperature for each rod less than some
tolerance.
- Insilico: L2 norm of relative power change and absolute change in the
eigenvalue less than some tolerance.

Single Fuel Rod Results

First consider some parametric studies for a problem

consisting of a single fuel rod.

* Fuelis 3.1% enriched UO.,.

 The moderator contains 1300 ppm dissolved boron.

« This problem includes 3 spacer grids, and a
relatively coarse axial mesh consisting of 9 regions
in the fuel.

« All tests in this work use the XSProc 8 group test
library to generate cross sections for Insilico.

* For these tests, temperature tolerance is 1K, power
tolerance is 1e-3 and eigenvalue tolerance is 2 pcm.

* These tests are run of 4 processors: 2 for Insilico, 1
for Bison-CASL, and 1 for CTF.

« For Picard tests damping refers to a power damping
and for Anderson it is the mixing parameter.

Figure 3: Final temperature
distrubtion in the fuel rod,
computed by Bison-CASL

Figures 4 and 5 show a comparison of run times for Picard and Anderson with several

storage depths over a variety of damping/mixing parameters:

« Anderson converges for each test considered, whereas Picard fails to converge without
sufficient damping.

« Anderson run times can increase for small damping factors, but performance is
otherwise consistently competitive with or better than optimally damped Picard.

« Performance of Anderson suffers as storage depth is increased above 2.

« Bison solves dominate timings, no gains from solving Insilico and Bison simultaneously.

Run Times — Gauss-Seidel Map Run Times - Intermediate Map
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Figure 4: Run time comparison: Figure 5: Run time comparison:
Gauss-Seidel map Intermediate map

Tables 1 and 2 show the effect varying power level has on the iterations:

« At each power level, eigenvalues differ by less than 2 pcm, which is less than the
tolerance for global convergence.

« For each test at 150% power, the iteration fails as CTF does not converge in the first
step in the coupled HFP solve.

« (Gauss-Seidel tests are insensitive to the power level, but for the Intermediate map,
iteration counts increase with power, somewhat less so for Anderson than Picard.

Table 2: Power variation for the Intermediate
map, damping/mixing factor = 0.4

Table 1: Power variation for the Gauss-Seidel
map, damping/mixing factor = 0.5

Picard Anderson-2 Picard Anderson-2
Power | Eigenvalue  Iterations | FEigenvalue  Iterations Power | FEigenvalue  Iterations | FEigenvalue  Iterations
25% | 1.2057739092 6 1.2057631718 6 25% | 1.2057703126 8 1.2057693978 7

50% | 1.2019279876 7 1.2019219774 6 50% | 1.2019180590 9 1.2019205968 11
75% | 1.1982826604 6 1.1982741575 6 75% | 1.1982627453 10 1.1982716393 10
100% | 1.1946961900 6 1.1946833864 6 100% | 1.1946874863 12 1.1946820355 11
125% | 1.1911857865 6 1.1911770197 6 125% | 1.1911663355 15 1.1911712479 10
150% CTF DNC CTF DNC 150% CTF DNC CTF DNC

3x3 Mini-Assembly Results

Consider a 3x3 array consisting of 8 3.1% UO, fuel rods around

a central guide tube (Figure 6).

« CTF+Insilico sub-cycled for 3 iterations before ramp to HFP.
Provides a very good initial iterate for coupled HFP solve.

« Tolerances: 1K for temperatures, 1e-3 for power, and 5 pcm
for the eigenvalue

« Tests are run on 16 processors: 9 for Insilico, 6 for Bison, and
1 for CTF.

Run times/iteration counts for these tests given in Table 3:

» Like single rod tests, Picard timings strongly dependent on
damping level, but Anderson performs competitively with
optimally damped Picard over wide range of parameters.

« Best time is obtained for Anderson with Intermediate map,
because Insilico and Bison solves are relatively balanced
(about 9 seconds for Insilico and 25 seconds for Bison)

» For problems like this where Picard converges very quickly,
Anderson likely won’t reduce iteration counts as Picard and
Anderson are the same for the first two iterations.

Figure 6: 3x3 mini-
assembly geometry

Table 3: Run times (and iteration counts in
parentheses) for 3x3 mini-assembly tests

Table 4 shows a comparison of methods to solve this problem with equal damping factors:

17x17 Assembly Results

For the last set of tests, we consider the VERA benchmark

progression problem P6.

* This problem consists of a single 17x17 assembly at HFP
with 264 fuel rods, 24 guide tubes, and one central
instrument tube (Figure 7).

 These tests use restart data for the HPF approximation, no
CTF+Insilico sub-cycling.

» Tolerances: 1K for temperatures, 1e-4 for power, and 2
pcm for the eigenvalue

* These tests were run on 64 processors: 36 for Insilico, 27
for Bison-CASL, and 1 for CTF.

Figure 7: PG lattice

Table 4: Iteration statistics for P6, damping factor = 0.5

Keyy Iterations Time(s)
Picard (Gauss-Seidel map) 1.2030101 7 9608
Anderson-2 (Gauss-Seidel map) | 1.2030117 5 7930

1.2030075 11
1.2030097 10

11660
10680

Picard (Intermediate map)
Anderson-2 (Intermediate map)

Very good agreement in the solution (less than 1 pcm difference in the eigenvalues).
For both maps, Anderson provides an improvement in iteration count over Picard.

The Insilico solve is relatively inexpensive for this problem due to cheap cross section
processing, and as a result the Intermediate map does comparatively poorly.

Table 5: Anderson-2 for Intermediate
map, varying damping

Power Damping Factor
0.25 0.5 0.75 1.0

[terations 14 10 10 10
Time(s) | 12830 10680 10650 10170

Table 5 shows run times for Anderson-2 with the Intermediate map at various damping
levels:

Anderson again converges at each damping level.
Convergence slows if the damping factor is made too small, but performance is
again consistent over a wide range of parameters.

Figure 8 shows the agreement between Picard and Anderson for several assembly-
averaged physical quantities:
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Figure 8: Assembly-averaged solutions from Picard iteration, and relative
difference between Anderson acceleration solutions and the Picard solution.

Conclusions

Anderson acceleration has been successfully integrated into the Tiamat coupling
between Bison-CASL, CTF, and Insilico.
Comparison with Picard iteration shows that the methods achieve roughly the same
level of accuracy in the solution.
Parametric studies on a variety of test problem sizes display advantages of utilizing
Anderson acceleration as an alternative solution method to Picard iteration.
- Good performance of Picard depends strongly on correct choice of damping
factors.
- Anderson displays performance competitive with or better than optimally
damped Picard over a wide range of parameters.
- Despite significant processor idle time, tests with the Gauss-Seidel map
generally display best timings.
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Gauss-Seidel Map Intermediate Map
Damping/Mixing Factor | Picard  Anderson-2 | Picard  Anderson-2 A‘b“ Wledgemem s
0.2 790.009) 622.7(5) | 814.7(9)  561.9(6)
0.4 514.9(4) 513.2(4) | 524.2(5)  522.6(5)
0.5 517.0(4) 526.1(4) | 522.1(5)  482.9(5)
0.6 485.1(4) 516.5(4) | 611.7(7)  476.5(5)
0.8 802.2(11)  563.8(5) DNC 527.2(6) ACO05-000R222725.
1.0 DNC 566.3(5) DNC 724.6(9)
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