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Participating codes: 
•  COBRA-TF (CTF) – Thermal hydraulic simulation code developed at PSU. Models 

coolant conditions using two-fluid, three-field representation of two-phase flow. 
•  Insilico – Neutronics solver from the VERA code suite. Uses XSProc to generate 

multigroup cross sections and solves Sn or SPn form of the transport equation. 
•  Bison-CASL – Single-rod fuel performance code. Models mechanical, thermal, and 

chemical properties of an individual fuel rod.  
•  Data Transfer Kit (DTK) – Handles transfers of data between codes, accounting for         

parallel communication, unit conversions, coordinate orientation, etc. 

Bison-CASL is transient and must model the heating of a fuel rod from zero power to full 
power. This is performed in Tiamat according to the following process: 
1.  Obtain an estimate of hot full power (HFP) conditions. Several ways to do this: 

a.  Perform one or more iterations of stand-alone CTF+Insilico. 
b.  Start from data saved in a restart file. 
c.  A combination of a. and b. 

2.  Model transition from cold zero power (CZP) to hot zero power (HZP) in Bison. 
Bison is run transient for 100 seconds, linearly increasing clad surface temperature 
from 20 to 293 C. 

3.  Model transition from HZP to HFP in Bison. Bison is run transient for 48 hours, 
linearly increasing clad surface temperature and power from HZP conditions to the 
estimated HFP conditions. 

4.  Solve the fully-coupled problem at HFP for one or more time steps. 
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Figure 1. Convergence behavior as a function of the damping factor !.

Figure 2. XY slice of 3 ⇥ 3 “mini-assembly” geometry.

fixed temperature and density). The third approach is a two-way coupling with the fuel temperature
feedback of the previous case with the addition of a subchannel flow model providing boundary conditions
to the clad heat transfer and moderator density feedback to the cross sections used by Denovo.

Figure 3 shows the axial shape of the power along the center of one of the fuel pins, and Figs. 4–5 show the
axial shape of the temperature along the fuel centerline and the midpoint of the clad, respectively. The
impact of the fuel temperature feedback is immediately evident, as the high-power region near the center of
the pin results in a higher temperature (Fig. 4), which increases the Doppler feedback and flattening the
overall axial shape. Failure to account for this fuel temperature feedback results in an overprediction of the
peak temperature by nearly 200 K. The e↵ect of including subchannel flow with moderator density
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Figure 6: 3x3 mini-
assembly geometry 
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Table VI. 3x3 array run times (and iteration counts), varying mixing parameter for
Anderson-2 (Gauss-Seidel) and power damping for all others

Gauss-Seidel Map Intermediate Map
Damping/Mixing Factor Picard Anderson-2 Picard Anderson-2

0.2 790.0(9) 622.7(5) 814.7(9) 561.9(6)
0.4 514.9(4) 513.2(4) 524.2(5) 522.6(5)
0.5 517.0(4) 526.1(4) 522.1(5) 482.9(5)
0.6 485.1(4) 516.5(4) 611.7(7) 476.5(5)
0.8 802.2(11) 563.8(5) DNC 527.2(6)
1.0 DNC 566.3(5) DNC 724.6(9)

Table VII shows a comparision between Picard iteration and Anderson-2 for each of the fixed-
point maps that we are considering. First, we see that all the eigenvalues differ by less than 0.5
pcm, which seems to indicate that the solutions should agree fairly well. In each case, we see that
Anderson-2 provides improvement relative to the corresponding Picard iteration. The improvement
from 7 iterations to 5 iterations for the Gauss-Seidel map is particularly significant. In the coupled
HFP solve stage, neutronics solves on average took around 200 seconds and Bison solves averaged
about 300 seconds, so the applications take fairly comparable times. Despite the good balance
between these applications and lower run time per fixed-point iteration, the increase in iteration
counts led to larger run times than the runs with the Gauss-Seidel map. Again, neutronics will likely
take significantly more time per iteration than Bison when utilizing higher-fidelity cross sections, so
the Gauss-Seidel map is the best option in this case.

Next, Table VIII shows results from solving the problem with the intermediate map using
Anderson-2. These results agree well with was was observed in previous tests. We see that iteration
counts can rise a bit when the damping level is made too small, but convergence is obtained at each
damping level considered, and performance is consistent over the upper range of damping factors.
Assuming that a damping factor of 0.5 is again near ideal for Picard, we see that over a wide range
of parameters Anderson again consistently converges comparably to slightly or faster than Picard
with optimal damping.

Lastly, in Figures 3 and 4 we see the the shapes of the final assembly averaged fission rate,
heat flux, and fuel and clad surface temperatures computed by Picard iteration, as well as the
relative difference of the same quantities computed by Anderson-2 with both the Gauss-Seidel and
intermediate maps from the Picard solution. We see that in each case, the Anderson solutions agree
very well with the solutions obtained from Picard iteration. Given the relative tolerance of 1e-4 for
the power difference for convergence, the agreement should not be expected to be much better than
what is observed here, so it seems that the different solution method does not lead to noticible loss
of accuracy in the solution.
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Table 3: Run times (and iteration counts in  
parentheses) for 3x3 mini-assembly tests 
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Table V. Effect of power level for the intermediate map, damping factor = 0.5
Picard Anderson-2

Power Eigenvalue Iterations Eigenvalue Iterations

25% 1.2057703126 8 1.2057693978 7
50% 1.2019180590 9 1.2019205968 11
75% 1.1982627453 10 1.1982716393 10

100% 1.1946874863 12 1.1946820355 11
125% 1.1911663355 15 1.1911712479 10
150% CTF DNC CTF DNC

iterations are performed for the HFP estimation step. All of the following tests were run on 16
processors: 9 for Insilico, 6 for Bison, and 1 for CTF.

Results comparing the performance of Picard and Anderson-2 with the Gauss-Seidel and
intermediate maps are shown in VI. These results agree fairly well with what was observed in the
singe pin tests. It seems that the sub-cycling of CTF/Insilico for the HFP estimation results in a
very good initial iterate for the coupled HFP solve, as iteration counts are uniformly fairly small.
As before, we that the Picard iterations display good convergence with a damping factor near 0.5,
but convergence suffers away from this range and the iteration fails to converge if the damping
factor is too high. Conversely, Anderson displays very consistent performance across the range
of parameters considered. In this case, Anderson at best matches the iteration counts for Picard
with optimal damping. This should be expected when Picard converges so rapidly, as the Anderson
acceleration is identical to Picard iteration for the first two steps.

For this problem, the best performance is actually observed with Anderson for the intermediate
map. While at its best, it takes one iteration more than the Gauss-Seidel map, the improved time
per iteration makes up for this fact. This result may change when considering higher fidelity cross
sections. In order for this mapping to be competitive the neutronics solves and Bison solves need
to be roughly equal in time, and it needs to not significantly increase iterations to convergence.
However, with higher fidelity cross sections the cost of a neutronics solve will likely dominate that
of a Bison solve, and the concurrent solve neutronics and Bison solves will likely provide little
benefit.

4.3 Single Assembly

We lastly consider tests with a single assembly. We consider the AMA benchmark progression
problem P6a. These tests require a change in the eigenvalue of less that 2pcm and a relative power
change of less than 1e-4 for neutronics global convergence, and a change in each of the max fuel,
clad and coolant temperatures for Bison and CTF convergence. Each of these tests was run on the
Fissile Four machines Boris or Natasha, so the number of available processors was only 64. We
allocated 36 processors for neutronics, 27 for Bison and 1 for CTF.
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Table III. Anderson-2 single pin run times (and iteration counts) for the intermediate map,
comparing power damping with mixing parameter

0.2 0.4 0.6 0.8 1.0

Power Daming 418.2(15) 307.2(10) 292.5(9) 285.6(9) 288.2(9)
Mixing Parameter 288.5(10) 321.7(11) 266.7(8) 272.9(9) 288.2(9)

Table IV. Effect of power level for the Gauss-Seidel map, damping factor = 0.5
Picard Anderson-2

Power Eigenvalue Iterations Eigenvalue Iterations

25% 1.2057739092 6 1.2057631718 6
50% 1.2019279876 7 1.2019219774 6
75% 1.1982826604 6 1.1982741575 6
100% 1.1946961900 6 1.1946833864 6
125% 1.1911857865 6 1.1911770197 6
150% CTF DNC CTF DNC

4.1.4 Power Variation

Tables IV and V show the effect that the operating power level has on the convergence behavior
for Picard and Anderson for each of the fixed-point maps we consider. In each case, CTF fails to
converge in the first iteration of the couple HFP solve at 150% power. The observed dependence of
iteration Picard counts on the power level agrees with what has been seen previously. Increasing
the power results in tighter coupling between the physical systems, and this tightens the range
over which Picard iteration is convergent. The Gauss-Seidel map keeps the physics more tightly
coupled, and as a result is less affected by changing the power level. Conversely, the Picard iteration
counts for the intermediate map increase steadily with power, reflecting the looser coupling between
physics in the map. While the iteration counts for the Gauss-Seidel map are mostly constant, there
is a consistent increase in iterations for the intermediate map as power increases. Anderson seems
to be moderately more insensitive to the power level. The iteration counts do not change for any
of the power levels considered for the Gauss-Seidel map, and for the intermediate map seem to be
flatter than those for Picard. These results again suggest a relative improvement in robustness for
Anderson acceleration over Picard.

The close agreement in the eigenvalues observed in these tables additionally indicate that these
methods achieve roughly the same level of accuracy in the solution.

4.2 3x3 Array

We next consider tests with a 3x3 mini-array. This array consists of eight fuel pins identical
to that from the previous section around a central guide tube. This problem has a finer coupling
mesh consisting of 49 regions in the fuel, and has 8 spacer grids. For this problem, 3 CTF/Insilico
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Table 1: Power variation for the Gauss-Seidel 
map, damping/mixing factor = 0.5 

Table 2: Power variation for the Intermediate 
map, damping/mixing factor = 0.4 

Fixed-Point Map Definitions 

Consider a 3x3 array consisting of 8 3.1% UO2 fuel rods around 
a central guide tube (Figure 6).  
•  CTF+Insilico sub-cycled for 3 iterations before ramp to HFP. 

Provides a very good initial iterate for coupled HFP solve. 
•  Tolerances: 1K for temperatures, 1e-3 for power, and 5 pcm 

for the eigenvalue 
•  Tests are run on 16 processors: 9 for Insilico, 6 for Bison, and 

1 for CTF.  
 
Run times/iteration counts for these tests given in Table 3: 
•  Like single rod tests, Picard timings strongly dependent on 

damping level, but Anderson performs competitively with 
optimally damped Picard over wide range of parameters. 

•  Best time is obtained for Anderson with Intermediate map, 
because Insilico and Bison solves are relatively balanced 
(about 9 seconds for Insilico and 25 seconds for Bison) 

•  For problems like this where Picard converges very quickly, 
Anderson likely won’t reduce iteration counts as Picard and 
Anderson are the same for the first two iterations. 

•  We utilize the Anderson acceleration solver in the Trilinos nonlinear solver package 
NOX.  

•  Tiamat heavily leverages the PIKE (Physics Integration Kernels) software package 
for solvers, observers, status tests, etc., so a wrapper class was created which 
implements the NOX solver as a PIKE solver. 

•  The NOX solver is used to converge the data transferred between applications, but 
PIKE determines global convergence of the coupled system. The following criteria 
are required to be satisfied: 
-  CTF: Change in max coolant and clad temperatures less than some tolerance. 
-  Bison: Change in the max fuel temperature for each rod less than some 

tolerance. 
-  Insilico: L2 norm of relative power change and absolute change in the 

eigenvalue less than some tolerance. 

•  Tiamat is code coupling being developed in CASL as a tool for analysis of pellet-
cladding interaction (PCI). 

•  Couples together the Bison-CASL fuel performance code with the COBRA-TF 
thermal hydraulics code and either MPACT or Insilico neutronics (we utilize Insilico) 
to identify fuel rods and assemblies of interest for further PCI calculations. 

•  Tiamat has previously used Picard iteration for this coupling, which is attractive 
primarily for its simplicity of implementation, though it has several drawbacks: 
−  Relatively slow rate of convergence. 
−  Necessity of ad hoc chosen damping factors to obtain acceptable performance. 

•  Anderson acceleration is an alternative solution method which has been seen to be 
faster converging and more numerically robust than Picard in several fields. 

•  In this work, we implement Anderson acceleration in Tiamat and evaluate its 
potential as an alternative to Picard iteration. 

•  To implement Anderson acceleration for this problem, we need to define the fixed-point 
map G to which it will be applied. 

•  G is formulated in such a way that Picard iteration can be written as un+1 = G(un). 
•  We pose the problem as a fixed-point problem in terms of transferred data. 
•  Tiamat includes 5 data transfers: 

-  CTF to Bison: Surface clad temperatures Tc from CTF are transferred to Bison. 
-  Bison to CTF: Heat flux q´´ from Bison is transferred to CTF. 
-  CTF to Insilico: Coolant temperatures Tw and densities ρw from CTF are 

transferred to Insilico 
-  Bison to Insilico: Fuel temperatures Tf from Bison are transferred to Insilico. 
-  Insilico to Bison: Power density q from Insilico is transferred to Bison. 

•  Indicate source/target data by a superscript (or subscript for heat flux) indicating the 
code: B for Bison, C for CTF, and I for Insilico. 

•  In this work, we consider Anderson acceleration applied to two fixed-point maps:  

                        Gauss-Seidel Map                                    Intermediate Map 

•  The Intermediate map falls in-between block Gauss-Seidel and block Jacobi. 
•  In current form of Tiamat, applications exist in independent processor space (Figure 2). 

-  For the Gauss-Seidel map, applications must be solved in series.  
-  For the Intermediate map, Insilico and Bison are solved simultaneously. 

•  The Intermediate map couples applications more loosely, so higher iteration counts should 
be expected. More efficient processor utilization may still result in lower run times. 

 
Numerical damping of certain fields is necessary to obtain convergence for Picard iteration. 
•  Given damping factor 0<α≤1, set the component of G corresponding to the field    to the 

weighted sum                         rather than   . 
•  We apply a separate damping to temperatures, densities, and powers. 
•  The mixing parameter in Anderson applies the same damping to each exposed field. 

Problem: The residual vector being exposed to Anderson acceleration consists of physical 
quantities which may be on vastly different orders of magnitude. 
•  Larger quantities may dominate the solution of the least-squares problem. 
•  Poor linear combination coefficients for smaller magnitude quantities may slow overall 

rate of convergence. 

Solution: Scale the variables that are exposed to Anderson acceleration, i.e. instead of 
solving u = G(u), consider the scaled variables v = Mu, where M is a diagonal scaling matrix, 
and solve the scaled fixed-point problem v = MG(M-1v). 
 
For the Gauss-Seidel map, the exposed transfers are temperatures and densities, and we 
scale these by their initial value, i.e. Mii = u0,i

-1 where u0 is the initial iterate. 
 
For the Intermediate map, power density is another exposed quantity, and these can be zero 
(e.g. in non-fuel pins). For this map, temperatures and densities are scaled as above, and 
powers are scaled by the local average power within the owning processor (or the scaling 
factor is set to 1 if the local average power is 0). 

•  Anderson acceleration has been successfully integrated into the Tiamat coupling 
between Bison-CASL, CTF, and Insilico. 

•  Comparison with Picard iteration shows that the methods achieve roughly the same 
level of accuracy in the solution. 

•  Parametric studies on a variety of test problem sizes display advantages of utilizing 
Anderson acceleration as an alternative solution method to Picard iteration. 
-  Good performance of Picard depends strongly on correct choice of damping 

factors. 
-  Anderson displays performance competitive with or better than optimally 

damped Picard over a wide range of parameters. 
-  Despite significant processor idle time, tests with the Gauss-Seidel map 

generally display best timings. 
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difference between Anderson acceleration solutions and the Picard solution. 
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alignment deals with the direction that the fuel rod axes are oriented. CTF and Insilico align the pin axis in the 
“z” direction in three-dimensional (3D) Cartesian coordinates, but Peregrine uses a two-dimensional (2D), 
axially-symmetric “R-Z” model with the pin axis aligned on the second coordinate index. In the MOOSE MultiApp 
DTK interface, an internal translation from 2D cylindrical to 3D Cartesian coordinates is provided, but it keeps 
the pin aligned in the second coordinate direction (“y” direction in Cartesian). Therefore, when implementing 
data transfers involving Peregrine, the “y” and “z” coordinates of the target coordinate point had to be swapped 
before passing to the DTK detection algorithm. In addition, each code models different spatial components of 
the reactor above and below the active fuel region; Insilico models the upper and lower coolant plenums, 
Peregrine models the full fuel pin, and CTF was restricted to coolant adjacent to the active fuel.  This results in 
different origins in the axial dimension for each code. Therefore, each transfer must adjust the coordinates to a 
common specification when communicating with DTK so that the active fuel regions are aligned between codes 
during the source/target intersection search.  The data transfers will be discussed in more detail in Section 3. 

2.2.2 Solution Procedure 

A challenging aspect of this problem is that the different physics associated with these codes are strongly 
coupled and nonlinear. By strongly-coupled we mean that the quantities calculated in each physics component 
and passed to the other have a significant impact on the physical quantities computed in other physics 
components. To solve the coupled system, block Jacobi and block Gauss-Seidel fixed-point (FP) iteration 
strategies are provided through PIKE.  The overall execution is to perform an initialization phase to bring all 
codes to hot full power (HFP) conditions and then perform the fixed-point coupled iterations between the codes 
at HFP until convergence for one or more time steps.  In order to apply a linear power ramping to Peregrine, an 
estimate of HFP conditions are needed.  There are currently three choices to obtain this estimate.  The first is to 
perform several iterations of CTF+Insilico (not coupled to 
Peregrine) at HFP conditions.  The second choice is to 
restart from a converged run using restart data saved on 
the coupling mesh.  The third choice is to use a 
combination of the first two choices – restart close to the 
solution and perform a few iterations of CTF+Insilico.   
The following describes the startup procedure. 

1. Estimate state at hot, full power (HFP).   

 Read restart file and/or perform several 
iterations of CTF+Insilico to estimate HFP 

conditions. 

 Estimate of clad surface temperature for 
each pin at each axial node 

 Estimate of power distribution for each pin and axial node. 

2. Model transition from cold, zero-power (CZP) to hot, zero-power (HZP) in Peregrine. 

 Peregrine transient for 100 seconds 

0

20

40

60

80

100

20

70

120

170

220

270

-100 0 5000

Po
w

er
 (%

) 

Co
ol

an
t I

nl
et

 T
em

pe
ra

tu
re

 (C
) 

Time (s) 

Figure 2-3:  Power ramping from CZP->HZP-
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Figure 1: Bison-CASL ramp to HFP 

Figure 2: MPI communicator layers in Tiamat 

Tables 1 and 2 show the effect varying power level has on the iterations: 
•  At each power level, eigenvalues differ by less than 2 pcm, which is less than the 

tolerance for global convergence. 
•  For each test at 150% power, the iteration fails as CTF does not converge in the first 

step in the coupled HFP solve. 
•  Gauss-Seidel tests are insensitive to the power level, but for the Intermediate map, 

iteration counts increase with power, somewhat less so for Anderson than Picard. 

C.T. Kelley, A. Toth, and R. Pawlowski

Table VII. Performance comparison for P6a, mixing parameter = 0.5 for Anderson-2 (Gauss-
Seidel) and power damping = 0.5 for all others

keff Iterations Time(s)

Picard (Gauss-Seidel map) 1.2030101 7 9608
Anderson-2 (Gauss-Seidel map) 1.2030117 5 7930

Picard (Intermediate map) 1.2030075 11 11660
Anderson-2 (Intermediate map) 1.2030097 10 10680

Table VIII. P6a performance for Anderson-2 on the intermediate map, varying power damp-
ing level

Power Damping Factor
0.25 0.5 0.75 1.0

Iterations 14 10 10 10
Time(s) 12830 10680 10650 10170

5 CONCLUSIONS

In this work, we have integrated Anderson acceleration into Tiamat as an alternative solution
method to the block Jacobi or block Gauss-Seidel PIKE solvers that have been used previously. We
consider several tests that verify the implementation of the method and display the convergence
behavior of Anderson acceleration for this code coupling. We observe that Anderson acceleration is
generally competitive with or moderately faster than Picard iteration with optimal damping, but
this level of performance is observed over a fairly wide range of parameters. Further testing is
merited to verify that similar behavior is observed with higher fidelity cross sections or with Insilico
substituted for MPACT.
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Table 4: Iteration statistics for P6, damping factor = 0.5 

•  To this point, the fully-coupled HFP problem has 
been solved by Picard iteration (also known as 
fixed-point iteration or successive substitution). 

•  Utilizes two variations of Picard iteration: 
-  Block Jacobi: Alternate between phase of 

solving of all applications and phase of 
transferring updated coupling data. 

-  Block Gauss-Seidel: Solve individual 
applications sequentially and transfer updated 
coupling data as soon as it is obtained. 
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Figure 4: Run time comparison:  
Gauss-Seidel map 

Figure 5: Run time comparison:  
Intermediate map 

Figure 3: Final temperature 
distrubtion in the fuel rod, 
computed by Bison-CASL  
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Table 4-1: Fuel Rod and Guide Tube Descriptions 

Parameter Value Units 

Fuel Pellet Radius 0.4096 cm 

Fuel Rod Clad Inner Radius 0.418 cm 

Fuel Rod Clad Outer Radius 0.475 cm 

Guide Tube Inner Radius 0.561 cm 

Guide Tube Outer Radius 0.602 cm 

Instrument Tube Inner Radius 0.559 cm 

Instrument Tube Outer Radius 0.605 cm 

Outside Rod Height 385.10 cm 

Fuel Stack Height (active fuel) 365.76 cm 

Plenum Height 16.00 cm 

End Plug Heights (x2) 1.67 cm 

Pellet Material UO2  

Clad / Caps / Guide Tube Material Zircaloy-4  
 

 

Figure 4-2: Five-Assembly Layout Showing Guide Tubes (GT) and Instrument Tube (IT) placement. 

Figure 7: P6 lattice 

For the last set of tests, we consider the VERA benchmark 
progression problem P6.  
•  This problem consists of a single 17x17 assembly at HFP 

with 264 fuel rods, 24 guide tubes, and one central 
instrument tube (Figure 7). 

•  These tests use restart data for the HPF approximation, no 
CTF+Insilico sub-cycling. 

•  Tolerances: 1K for temperatures, 1e-4 for power, and 2 
pcm for the eigenvalue 

•  These tests were run on 64 processors: 36 for Insilico, 27 
for Bison-CASL, and 1 for CTF. 
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Table VII. Performance comparison for P6a, mixing parameter = 0.5 for Anderson-2 (Gauss-
Seidel) and power damping = 0.5 for all others

keff Iterations Time(s)

Picard (Gauss-Seidel map) 1.2030101 7 9608
Anderson-2 (Gauss-Seidel map) 1.2030117 5 7930

Picard (Intermediate map) 1.2030075 11 11660
Anderson-2 (Intermediate map) 1.2030097 10 10680

Table VIII. P6a performance for Anderson-2 on the intermediate map, varying power damp-
ing level

Power Damping Factor
0.25 0.5 0.75 1.0

Iterations 14 10 10 10
Time(s) 12830 10680 10650 10170

5 CONCLUSIONS

In this work, we have integrated Anderson acceleration into Tiamat as an alternative solution
method to the block Jacobi or block Gauss-Seidel PIKE solvers that have been used previously. We
consider several tests that verify the implementation of the method and display the convergence
behavior of Anderson acceleration for this code coupling. We observe that Anderson acceleration is
generally competitive with or moderately faster than Picard iteration with optimal damping, but
this level of performance is observed over a fairly wide range of parameters. Further testing is
merited to verify that similar behavior is observed with higher fidelity cross sections or with Insilico
substituted for MPACT.
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Table 5: Anderson-2 for Intermediate 
 map, varying damping 

•  Acceleration method for solving the fixed-point problem u = G(u). 
•  Stores at most m (user specified number) previous function evaluations and 

computes new iterate as the linear combination of these with minimal linearized 
residual: 

     where mn = min{m,n}, and {     } solves the constrained least-squares problem: 

 
•  The algorithm with any particular m is called Anderson-m (Anderson-0 is Picard), 

and β is called the mixing parameter. 
•  No derivative information or linear iterations required, giving an advantage over 

Newton-like methods. 
•  Assuming G is relatively expensive, the dominant computational cost per iteration is 

the evaluation of G (same as Picard). 
•  Main added cost over Picard is storage of additional vectors; Anderson-m requires 

the storage of at most 2(m+1) vectors. 
•  Theoretical background: 

-  Anderson acceleration may be viewed as a sort of quasi-Newton method [Fang 
and Saad, 2009]. 

-  Anderson acceleration is “essentially equivalent” to GMRES iteration for linear 
problems [Walker and Ni, 2011]. 

-  Anderson acceleration is locally r-linearly convergent if G is nonlinear and 
contractive near the solution [Toth and Kelley, 2015]. 
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First consider some parametric studies for a problem 
consisting of a single fuel rod. 
•  Fuel is 3.1% enriched UO2. 
•  The moderator contains 1300 ppm dissolved boron. 
•  This problem includes 3 spacer grids, and a 

relatively coarse axial mesh consisting of 9 regions 
in the fuel. 

•  All tests in this work use the XSProc 8 group test 
library to generate cross sections for Insilico. 

•  For these tests, temperature tolerance is 1K, power 
tolerance is 1e-3 and eigenvalue tolerance is 2 pcm. 

•  These tests are run of 4 processors: 2 for Insilico, 1 
for Bison-CASL, and 1 for CTF. 

•  For Picard tests damping refers to a power damping 
and for Anderson it is the mixing parameter. 
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• MOOSE to CTF: Heat fluxes (q00) computed by MOOSE are transferred to CTF

• CTF to Neutronics: Coolant temperatures (Tw) and densities (⇢w) computed by CTF are
transferred to the neutronics model evaluator.

• MOOSE to Neutronics: Fuel temperatures (Tf ) compute by MOOSE are transferred to the
neutronics model evaluator.

• Neutronics to MOOSE: Pin powers (q) computed by the neutronics model evaluator are
transferred to MOOSE.

Notationally, we will differentiate the source values from target values using a superscript (or
subscript for heat flux) indicating the code: I for Insilico, M for MOOSE, and C for CTF. For
example, we will let TC

c be the source clad surface temperatures computed by CTF, and T

M
c be the

target values transferred to MOOSE.

3.2.1 Fixed-Point Map Definitions

To implement Algorithm 1 for Tiamat, we simply need to define the vector of unknowns that
will be solved for and the fixed-point map G. We do this in a way such that the map is derived from
Picard iteration. Solving the coupled problem can be viewed as a fixed-point problem in terms of
the data transfers, as the same data being transferred to an application will lead to the same solution
in the application.

We first consider a block Gauss-Seidel map, which we can described as follows:
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We can similarly consider a block Jacobi map, described as follows:
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There are other possible orderings of solves and transfers, and one we consider alternates between
simultaneously solving neutronics and Bison then solving CTF. We refer to this as the intermediate
map, and we represent it as follows:
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• MOOSE to CTF: Heat fluxes (q00) computed by MOOSE are transferred to CTF

• CTF to Neutronics: Coolant temperatures (Tw) and densities (⇢w) computed by CTF are
transferred to the neutronics model evaluator.

• MOOSE to Neutronics: Fuel temperatures (Tf ) compute by MOOSE are transferred to the
neutronics model evaluator.

• Neutronics to MOOSE: Pin powers (q) computed by the neutronics model evaluator are
transferred to MOOSE.

Notationally, we will differentiate the source values from target values using a superscript (or
subscript for heat flux) indicating the code: I for Insilico, M for MOOSE, and C for CTF. For
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M
c be the

target values transferred to MOOSE.
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We can similarly consider a block Jacobi map, described as follows:

Page 10 of 24

Table 4 shows a comparison of methods to solve this problem with equal damping factors: 
•  Very good agreement in the solution (less than 1 pcm difference in the eigenvalues). 
•  For both maps, Anderson provides an improvement in iteration count over Picard. 
•  The Insilico solve is relatively inexpensive for this problem due to cheap cross section 

processing, and as a result the Intermediate map does comparatively poorly. 

Table 5 shows run times for Anderson-2 with the Intermediate map at various damping 
levels: 
•  Anderson again converges at each damping level. 
•  Convergence slows if the damping factor is made too small, but performance is 

again consistent over a wide range of parameters. 
 
Figure 8 shows the agreement between Picard and Anderson for several assembly-
averaged physical quantities: 
•  For each quantity, maximum relative difference is on the order of 1e-4, which is the 

power convergence tolerance. 

Figures 4 and 5 show a comparison of run times for Picard and Anderson with several 
storage depths over a variety of damping/mixing parameters: 
•  Anderson converges for each test considered, whereas Picard fails to converge without 

sufficient damping. 
•  Anderson run times can increase for small damping factors, but performance is 

otherwise consistently competitive with or better than optimally damped Picard. 
•  Performance of Anderson suffers as storage depth is increased above 2. 
•  Bison solves dominate timings, no gains from solving Insilico and Bison simultaneously. 

Figure 10: Comparison of methods applied to minimize xT x
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