
Consortium for Advanced
Simulation of LWRs

CASL-U-2015-0296-000

Document Progress Made
on Developing Multi-
Phase Capabilities in

Hydra-TH
(LA-UR-15-26503, version 2)

Balasubramanya T. Nadiga and
Markus Berndt

Los Alamos National Laboratory

Andrew Bauer
Kitware

August 18, 2013

Document Progress on Developing Multi-Phase

Capabilities in Hydra-TH 1

Balasubramanya T. Nadiga
Markus Berndt

Los Alamos National Laboratory

Andrew Bauer
Kitware Inc.

1LA-UR-15-26503

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los
Alamos National Security, LLC for the National NuclearSecurity Administration of the U.S. Department
of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that
the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form
of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a
researcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a
publication or guarantee its technical correctness.

1 CASL-U-2015-0296-000

Contents

1 Executive Summary 4

2 Introduction 4

3 A Proposed Comprehensive Multiphase Flow Formulation 5
3.1 Ensemble-Averaged Multiphase Equations 6

3.1.1 Volume Fraction Constraint as a Basis for Pressure Update 7
3.1.2 Choice in Enforcing the Volume Fraction Requirement 8

3.2 A Proposed Semi-Implicit Algorithm . 9
3.2.1 A Nonlinear Equation for Incremental Pressure 10
3.2.2 Iterated Corrector . 11
3.2.3 An Approximation for Low Speed Flows: Constant Microdensity . . . 12
3.2.4 Non-Isothermal Low Speed Flow Setting (ρ̄k(p)) 12

4 Current Multiphase Formulation as Implemented in Hydra-TH and a Pro-
posal for its Correction 12
4.1 Current Formulation as Implemented in Hydra-TH 12
4.2 A Proposal to Correct the Formulation in Hydra-TH 14

5 A Computational Demonstration of the Shortcoming in the Current For-
mulation 16

6 Software Layout 17
6.1 Source code directory layout . 18
6.2 Description of the classes relevant to the multiphase implementation 19
6.3 The CCMultiField::solve() method . 21
6.4 The Hydra Data Container . 22

7 UTri Integration 23
7.1 Introduction . 23

7.1.1 Code Integration . 24
7.1.2 Building Hydra-TH with UTri Support 25
7.1.3 Hydra cntl Input . 25

7.2 SUTTG . 26
7.2.1 Building NetCDF Steam Tables with SUTTG 26

8 Summary and Acknowledgments 27

9 Appendix: Adding an Inner Iteration 28

10 Appendix: Multi-field Navier Stokes Input 28
10.1 cc multifield . 28
10.2 nfields . 29
10.3 energy . 29
10.4 hydrostat . 29
10.5 Initial Conditions . 30
10.6 Per-field initial conditions . 30
10.7 Initial conditions . 31

2 CASL-U-2015-0296-000

10.8 Body Forces . 31
10.8.1 body force . 31
10.8.2 boussinesqforce . 32

10.9 Boundary Conditions . 33
10.9.1 Per-Field Scalar Dirichlet Boundary Conditions 33
10.9.2 Scalar Dirichlet Boundary Conditions 33
10.9.3 Velocity Dirichlet Boundary Conditions 34
10.9.4 Symmetry Velocity Boundary Conditions 35
10.9.5 heatflux . 35
10.9.6 passiveoutflowbc . 36
10.9.7 pressureoutflowbc . 36

10.10Heat Sources . 36
10.10.1 heat source . 37

10.11Pressure, Momentum and Transport Solvers 37
10.11.1 ppesolver . 37
10.11.2 momentumsolver . 41
10.11.3 transportsolver . 42

10.12Momentum exchange . 43
10.12.1 Drag force . 43
10.12.2 Constant drag force . 43
10.12.3 Ishii-Zuber drag force . 43
10.12.4 Tomiyama drag force . 44
10.12.5 Lift force . 44
10.12.6 Constant lift force . 45

10.13time integration . 45
10.14solution method . 46

3 CASL-U-2015-0296-000

1 Executive Summary

This report describes the work carried out for completion of the Thermal Hydraulics Methods
(THM) Level 3 Milestone L3.CFD.THM.P11.07 for the Consortium for Advanced Simulation
of Light Water Reactors (CASL).

Work on the multiphase flow capability in Hydra-TH with an aim of faithfully represent-
ing subcooled boiling has been progressing for the past several years. Starting in PoR 10,
this work had again been made a priority, but then came to a halt at the start of PoR 11
due to changes in staffing of the project at Los Alamos National Laboratory. This report
captures the current status of this work.

We re-evaluate the multiphase formulation that has previously been developed and forms
the basis for multiphase flow simulation in Hydra-TH. The current formulation as it is im-
plemented in Hydra-TH is based on a) dynamically advancing the volume fraction of all
but one of the phases and setting the volume fraction of the last phase to satisfy the unity-
summation constraint, and b) making an anelastic approximation for the mixture momen-
tum. (The latter leads to a Poisson equation for pressure increment.) This approach leads
to inconsistencies that are suspected to underlie the unsuccessful attempts at verification of
the multiphase flow capability even in isothermal flow settings. Since neither the anelastic
approximation nor the update procedure for volume fraction is justifiable, a dynamically
consistent multiphase formulation is developed for Hydra-TH wherein the unity-summation
constraint forms the basis for the pressure update. This approach involves the solution of a
nonlinear elliptic equation. After considering numerous variations with an aim of simulta-
neously rendering the approach computationally efficient and of being able to effectively use
previously developed computational infrastructure, a particular variation that linearizes the
nonlinear elliptic equation is proposed. Work on implementing this formulation was started,
but is not complete. Along with the software layout for the multiphase infrastructure and
the progress on the UTri water/steam property interface presented here, we hope that this
report will serve as a road map for further development of the multiphase flow capability in
Hydra-TH.

2 Introduction

There have been significant improvements to the single phase flow solver capability in Hydra-
TH in the past three years. These improvements include improvements to the dynamical
core such as an advanced fully implicit time stepping scheme, an array of new turbulence
models, and new capabilities such as conjugate heat transfer and integrated surface chem-
istry for CRUD. For previous milestone reports on the topic of multi-phase flow capability
development see [3, 1, 2].

However, given the importance of subcooled boiling in determining Critical Heat Flux
(CHF) in Pressurized Water Reactors (PWRs), a full-fledged multiphase capability in Hydra-
TH is essential for it to serve as a self-contained Thermo-Hydraulic (TH) module in the
CASL computational reactor test bed. However, although work on the multiphase capability
in Hydra-TH has been going on for the past three years, attempts at verification of this
capability even in the simpler setting of isothermal flows have not been entirely satisfactory.

While reasons for the delay in the development of the multiphase capability in Hydra-
TH are multifaceted and include various logistical and staffing issues, a potential problem
with the formulation was also suspected. For this reason, a full re-examination and re-
evaluation of the formulation was undertaken here. The re-evaluation was done by first

4 CASL-U-2015-0296-000

deriving a new and complete formulation: Starting from multiphase modeling theory and
using the fundamental building blocks used for temporally advancing variables that satisfy
particular governing partial differential equations in Hydra-TH, a new formulation/algorithm
was developed.

A comparison of the current formulation with this proposed formulation helped identify
two particular steps in the current formulation as problematic. The first of these steps is
related to dynamically advancing the volume fraction of all but one of the phases and setting
the volume fraction of the last phase to satisfy the unity-summation constraint. The second
is related to making an anelastic approximation for the mixture momentum. The latter leads
to a Poisson equation for the pressure increment. It seems that the latter approximation was
hoped to be of relevance in the low-speed flow limit. We find, however, that neither of these
approximations is justifiable in any limit of multiphase flow. Nevertheless, the infrastructure
that was put in place for the implementation of the current algorithm, and which constituted
a large fraction of the multiphase effort is entirely reusable.

The rest of this report is structured as follows: In the next section a more complete
multiphase formulation for Hydra-TH is proposed. Section 4 then presents the current for-
mulation as it is implemented in Hydra-TH and identifies the problematic steps. It then
presents a strategy to correct that formulation. A case study is presented in Sec. 5 that
demonstrates the problems with the existing formulation/implementation. In order to facili-
tate the implementation of the correction presented in Sec. 4, the software layout as relevant
to the multiphase flow solver in Hydra-TH is presented in Sec. 6. In Sec. 7, progress on a
new interface for water/steam properties is presented. Finally, a brief summary is presented.
Appendices contain various other details including those on user input to Hydra-TH.

3 A Proposed Comprehensive Multiphase Flow For-

mulation

In order to undertake a full re-examination and reevaluation of the formulation as currently
implemented in Hydra-TH, we first derive a new and complete formulation: Starting from
multiphase modeling theory and using the fundamental building blocks used for tempo-
rally advancing variables that satisfy particular governing partial differential equations in
Hydra-TH, a new formulation/algorithm is developed. In Section 4, we will then discuss the
current formulation in Hydra-TH and how it relates to the more comprehensive formulation
introduced in this section.

To better understand how the current implementation relates to the full formulation that
is presented in this section, an appreciation of how the volume fraction contraint is treated
is central. Indeed, how the volume fraction contraint is enforced is closely related to the
different regimes that can be identified in terms of dynamic compressibility. Clearly, in a
multiphase flow, density of the individual phases can be very different and this is always
allowed for. However, this variation in density is of a static nature and unrelated to the
variation in density that couples dynamics and thermodynamics and that results when flow
speed is a significant fraction of the acoustic propagation speed. Based on such dynamical
compressibility effects, one can identify

• A regime where the effects of dynamical compressibility are negligible

– ρ̄k = cnst.

– ρ̄k = ρ̄k(p)

5 CASL-U-2015-0296-000

• A regime where the effects of dynamical compressibility are not negligible

– ρ̄k = ρ̄k(T̃k)

– ρ̄k = ρ̄k(p, T̃k)

The present development of the multiphase capability in Hydra-TH is mainly targeted
at flows where the dynamical effects of compressibility are negligible—a regime most often
encountered in the operation of PWRs. Nevertheless, we begin our exposition by considering
the full governing equations using the framework of ensemble averaging.

3.1 Ensemble-Averaged Multiphase Equations

Consider first, a particular realization, instance or configuration of the multiphase flow we
are interested in and denote that realization by µ. We are, however, only interested in being
able to describe the ensemble averaged evolution of that flow—an average over all possible
µs. To do this we consider ensemble averages of the governing equations—the local mass,
momentum, and energy conservation equations. Further, however, for these ensemble aver-
aged equations to be useful, they have to be written in terms of a suitable set of ensemble
averaged variables only. (This simultaneously necessitates the introduction of multiphase
closures that express the various ensemble averaged correlations between unaveraged vari-
ables that arise due to nonlinearities in the governing equations.) Consequently, we define the
ensemble-averaging operator for a generic spatio-temporally variable quantity φ as follows:

Φ̄ (x, t) =

∫
E

dm (µ) Φ (x, t;µ) . (1)

Here dm (µ) is the probability of occurrence of the particular realization µ and E is the full
set of possible realizations. Further, we are interested in functions that are typically smooth
within a particular phase itself but which are discontinuous across phase boundaries. For
such functions, a proper consideration of the behavior of the ensemble averaging operator is
crucial and for this the reader is referred to [7].

If we let the phase indicator (characteristic) function X
k

(x, t;µ) eponymously indicate
the presence or absence of phase k in realization µ at the spatio-temporal location (x, t),
then volume fraction of phase k at location (x, t) is obtained as the ensemble average of the
component indicator function:

α
k

(x, t) ≡ X
k

(x, t) =

∫
E

dm (µ)X
k

(x, t;µ) (2)

Next, consider the local mass, momentum, and energy conservation equations

∂ρ

∂t
+ ∇ · (ρv) = 0 (3)

∂ρv

∂t
+ ∇ · (ρvv) = ∇ ·T + ρf (4)

∂ρe

∂t
+ ∇ · (ρve) = T : ∇v −∇ · q +Q. (5)

Given the presence of multiple phases, we multiply the above equations by the phase indi-
cator function X

k
and then ensemble average them. Local mass, momentum, and energy

6 CASL-U-2015-0296-000

conservation equations for each of the phases is then obtained as

∂ρ̂
k

∂t
+ ∇ · (ρ̂

k
ṽ

k
) = Γk (6)

∂ρ̂
k
ṽ

k

∂t
+ ∇ · (ρ̂

k
ṽ

k
ṽ

k
) = −α

k
∇p+∇ · (αkτ k)

+Γkṽk + Mk + ρ̂kf (7)

∂ρ̂
k
ẽ
k

∂t
+ ∇ · (p+ ρ̂

k
ẽ
k
ṽ

k
) = −∇ · (αkqk) + αkQk +

αkTk : ∇ · ṽk + ekΓk (8)

In the momentum equation, stress tensor Tk has been partitioned into the isotropic pressure
component and the deviatoric stress component τ k and a single pressure approximation
has been made. We note that we have made the choice of the following variables α

k
, ρ̂

k
=

α
k
ρ̄

k
, ṽ

k
= Xkρv/Xkρ, ẽ

k
= Xkρe/Xkρ in writing the above equations. These equations are

complemented by equations of state for each phase:

ρ̄
k

= ρ̄
k
(p, T̃k) (9)

where T̃k = ẽ
k
/cpk. Finally, the volume fraction itself evolves and its evolution is given by

∂α
k

∂t
+ ṽ

k
·∇α

k
= V

k
(10)

Since our focus at this stage is on the overall formulation and algorithmic development,
we presently eschew the definitions of the various closure terms that appear on the right hand
sides of the previous equations. Clearly, after the formulation and algorithm is established,
we will consider the issue of closure of terms that arise due to ensemble averaging. In the
equations above, only one of Eq. 10 and Eq. 6 should be used as a prognostic equation, for
the other variable can be found using the equation of state. But, it should be clear from the
above equations that the requirement ∑

k

α
k

= 1 (11)

is not automatically satisfied. Indeed, how this requirement is satisfied seems to lead to
different algorithmic strategies, while also noting that this constraint also leads to further
constraints on the closures.

3.1.1 Volume Fraction Constraint as a Basis for Pressure Update

The above requirement of volume fraction of the component phases summing to unity will be
the basis for obtaining an equation that will involve a Laplacian of pressure or equivalently
that of the increment in pressure. This equation will also comprise other terms of the form
1/c2∂2p/∂t2 that make it a wave equation that has a hyperbolic nature to it. However, if
one is primarily interested in flow dynamics and is willing to admit a distortion of acoustic
waves, then pressure boundary conditions can be specified on the entirety of the boundary
of the domain and the equation can be inverted to obtain pressure. This would enable the
temporal advancement of the full state.

This step could be thought of as being analogous to the projection step when the flow
is incompressible. That is, in the incompressible context, a genuine elliptic equation is

7 CASL-U-2015-0296-000

obtained from the incompressibility requirement, that then allows a consistent update of
velocity by removing the divergent component of the intermediate velocity update (v∗). In
the multiphase context, possible large differences in the densities of the different phases do
not allow for an incompressibility assumption. However, for low speed flows, the equation of
state Eq. 9 may be eliminated in favor of the assumption

ρ
k

= cnst. (12)

With such an approximation, the volume fraction sum requirement Eq. 11 in conjunction
with Eq. 6 is seen to lead

∇ ·
∑

k

α
k
ṽ

k
=
∑

k

Γk
ρ̄k
. (13)

In the absence of phase change, and in this limit of constant microdensity, the above equation
states that the mixture (i.e., volume fraction weighted average of) Favre averaged (i.e.,
density weighted) velocity is incompressible. Under this approximation—an approximation
relevant in a multiphase context when dynamical compressibility effects are small, i.e., when
relevant Mach numbers are small—acoustic waves are eliminated. It is most likely that the
current formulation of the multiphase flow solver in Hydra-TH was designed for this limit,
with the likely intention of extending it further later. However, as we will see later, rather
than the above constraint, the computational implementation reflects the imposition of the
constraint

∇ ·
∑

k

ρ̂
k
ṽ

k
= 0 (14)

in the absence of phase change. For brevity, we will call the above constraint as the anelastic
approximation (i.e., the mixture momentum is non-divergent).

3.1.2 Choice in Enforcing the Volume Fraction Requirement

Considering the volume fraction summation requirement in the compressible context, it
should be noted that this requirement can be enforced in more than one manner: It could
be based on the volume fraction advection equation:∑

k

ṽ
k
·∇α

k
=

∑
k

V
k

(15)

or as: ∑
k

ρ̂
k

ρ
k
(p)

= 1 (16)

In either of these cases, an implicit (or partially implicit) temporal discretization of the
relevant quantity (α

k
or ρ̂

k
and a further use of the momentum equation can be seen to lead

to a Laplacian like operator on pressure (or its increment).
However, it seems that using Eq. 15 may have two disadvantages:

• Parameterizations V
k

are involved

• Mass conservation would not be exact.

For this reason, we pursue a formulation that uses Eq. 16.

8 CASL-U-2015-0296-000

3.2 A Proposed Semi-Implicit Algorithm

By semi-implicit here we mean that not all nonlinear terms are handled implicitly (linear
terms are). For example, advection-related nonlinearities in the momentum equation are
handled explicitly. It is important to note that these terms are not central to the phe-
nomenology of acoustics.

1. First, consider a first order predictor update of the mass continuity equation Eq. 6:

ρ̂p
k

= ρ̂n
k

+ ∆t∇ ·
(
ρ̂n

k
ṽn

k

)
, (17)

Here, ρ̂p
k

is the first-order predictor value of ρ̂
k

at time n+ 1.

2. Next, consider a first order predictor update of the energy equation Eq. 8 to obtain T p

and then use the equation of state and ρ̂p
k

to obtain αp
k

3. Next, consider a linear-combination of forward and backward-Euler temporal dis-
cretizations of the mass continuity equation Eq. 6:

ρ̂n+1
k
− ρ̂n

k

∆t
+ θ∇ ·

(
ρ̂n+1

k
ṽn+1

k

)
+ (1− θ)∇ ·

(
ρ̂n

k
ṽn

k

)
= 0. (18)

Here 0 ≤ θ ≤ 1. θ = 0 corresponds to forward-Euler, while θ = 1/2 to the trapezoidal
rule, and θ = 1 to the backward-Euler treatments respectively.

Equation 18 may be re-written as

ρ̂n+1
k

= R
k

+ θ∆t∇ ·
(
ρ̂n+1

k
ṽn+1

k

)
, (19)

where R
k

represents all the known terms.

4. Next, consider a semi-implicit first-order predictor update of the momentum equation
Eq. 7. So as to

(a) retain resemblance to single-phase semi-implicit projection method for incom-
pressible flow algorithm

(b) improve overall stability, and

(c) improve accuracy (but not order or accuracy)

do this using the the theta method:

ρ̂p
k
ṽp

k
− ρ̂n

k
ṽn

k

∆t
= −θA(ρ̂p

k
,vn

k
)ṽp

k
− (1− θ)A(ρ̂n

k
,vn

k
)ṽn

k

+θM
k
(ṽp

k
) + (1− θ)M

k
(vn

k
)

−αn
k
∇pn. (20)

Since the above equation is linear in ṽp
k
, form the matrix operator and perform a linear

solve to obtain the predictor velocity ṽp
k

at time n+ 1. Note that

(a) Some terms such as M (viscous forces, and body-forces, and other such terms)
are considered at second order

(b) Other items such as advection and pressure gradient terms are considered at first
order

9 CASL-U-2015-0296-000

5. Next, again use a theta-average of the forward- and backward-Euler time discretizations
of the momentum equation, but consider a second-order update to obtain

ρ̂n+1
k

ṽn+1
k
− ρ̂n

k
ṽn

k

∆t
= −θA(ρ̂p

k
,vp

k
)ṽp

k
− (1− θ)A(ρ̂n

k
,vn

k
)ṽn

k

+θM
k
(ṽp

k
) + (1− θ)M

k
(vn

k
)

−
αn

k
+ αp

k

2
∇pn − θαp

k
∇δp. (21)

Note that

(a) Even though advection is explicit, use of the velocity predictor renders treatment
of advection second order in time

(b) Pressure gradient terms are handled second order in time and involves the un-
known δp = pn+1 − pn

Equation 21 may be re-written symbolically as

ρ̂n+1
k

ṽn+1
k

= V
k
− θ∆tαp

k
∇δp (22)

Here V
k

represents all the known terms on the RHS of Eq. 21.

6. Next, substitute the above equation in the continuity update Eq. 19 to obtain

ρ̂n+1
k

= R
k

+ θ′∇ ·
(
V

k
− θ′αp

k
∇δp

)
= R′

k
− θ′∇ ·

(
αp

k
∇δp

)
(23)

Substituting the above equation in Eq. 15 leads to

∑
k

ρ̂n+1
k

ρ
k
(pn + δp)

=
∑
k

R′
k

+ θ∇ ·
(
αp

k
∇δp

)
ρ

k
(pn + δp)

= 1 . (24)

3.2.1 A Nonlinear Equation for Incremental Pressure

Equation 24 is a nonlinear equation for incremental pressure δp. The crux of the algorithm
is in being able to solve this nonlinear system efficiently.

Note that in the case when the equation of state is tabular (not an analytic formula),
the denominator of Eq. 24 could be problematic. For this reason, we linearize the equation
of state in δp about its previous value as:∑

k

R′
k
− θ∇ ·

(
αp

k
∇δp

)
ρn

k
+ δp/c2′

k

= 1. (25)

Further, assuming that

δp/c2
′

k
� ρn

k
, (26)

(while noting that this approximation holds when the dynamic effects of compressibility is
small or when the relevant Mach number is small, as seen by using a ρ

k
v2

k
scaling for δp)

Eq. 25 may be simplified as∑
k

(
R′

k
+ θ′

k
∇ ·

(
αp

k
∇δp

))
(1− γ

k
δp) = 1. (27)

10 CASL-U-2015-0296-000

If this approximated, but still nonlinear, system cannot be solved efficiently (e.g., using an
inexact-Newton method) , a further linearization would lead to

Aδp = b (28)

that may be solved for δp. Following this, ρ̂n+1
k

ṽn+1
k

may be updated using Eq. 22 and ρ̂n+1
k

may be updated using Eq. 19 to complete the update cycle.

In the case that the fully nonlinear system cannot be efficiently solved, since approxi-
mations are being made in the volume fraction sum constraint equation, the consequences
of the approximations are difficult to anticipate. Furthermore, from a computational point
of view, note that the elliptic operator has to be reformulated at each time-step. This is
a potential cause for computational inefficiency and approaches to reformulate the elliptic
equation less frequently in order to amortize its cost have to be considered.

3.2.2 Iterated Corrector

At a large enough time-step the above two step procedure will become unstable and a
sequence of corrector steps will be needed. This is in the same sense as in the incompressible
one-phase context when going from semi-implicit projection to fully-implicit Picard. In such
a situation, Eq. 24 may be re-written with a ∗ superscript where the ∗ superscript indicates
the changing iterate index:

∑
k

ρ̂n+1
k

ρ
k
(p∗ + δp)

=
∑
k

R∗
k

+ θ∇ ·
(
α∗

k
∇δp

)
ρ

k
(p∗ + δp)

= 1. (29)

and where δp = pn+1−p∗. In such a context, previous comments on handling the nonlinearity
in δp hold and the linearizations suggested above are likely to be a good approximation.
Nevertheless, the non-constancy of the linear operator over the iterate index is a cause for
concern. This is in the sense that the multigrid solve has to be setup afresh at each iterate
and this setup can be expensive. If we aim to only setup the multigrid once per time-step,
then it is likely that a further expansion of the linear operator in the numerator of Eq. 29
will help achieve this. That is, in the iterated setting, it is very likely that lagging a small
portion of the linear operator will affect the iteration count (for same convergence), but we
will have the advantage of dealing with a linear operator that does not vary over the iteration
index:

∑
k

R̃∗
k

+ θα∗
k
∇2δp

ρ
k
(p∗ + δp)

= 1. (30)

In case the equation of state is tabular, an iterative solution of

∑
k

ρ̂n+1
k

ρ
k
(p∗ + δp)

=
∑
k

R∗
k

+ θ∇ ·
(
α∗

k
∇δp

)
ρ

k
(p∗)

= 1. (31)

where in the limit δp → 0 is likely to suffice. In the above equation the dependence of
microdensity on the unknown δp has been removed in order to accommodate the possibility
of tabular EOS.

11 CASL-U-2015-0296-000

3.2.3 An Approximation for Low Speed Flows: Constant Microdensity

As seen in the previous subsection, the equation for incremental pressure involves the inver-
sion of a nonlinear system. If the primary interest is in low speed flows wherein effects of
dynamic compressibility are negligible then this nonlinearity can be eliminated. In Eq. 26,
we considered the approximation that the microdensity perturbations due to incremental
changes in pressure were small. Instead, if we altogether neglect microdensity variations and
assume

ρ
k

= cnst.,

then the volume fraction summation constraint Eq. 24 becomes

R′ + θ∇ ·
(∑

k

αp
k

ρ
k

)
∇δp = 1. (32)

It has to be noted that even with this approximation, the coefficients of the elliptic oper-
ator are not constant in time raising issues of computational efficiency (and as discussed
previously).

3.2.4 Non-Isothermal Low Speed Flow Setting (ρ̄k(p))

For low speed flows, we used the constant microdensity approximation in the isothermal
context. But, in the non-isothermal context, for low speed flows, the feedback of temperature
on the evolution of mass and momentum is restricted to its effect on buoyancy (body force).
That is, while energy or effectively temperature evolves (changes) according to the energy
equation due to the thermodynamics of phase change, heat transport, and heat sources
and sinks, those changes in temperature do not lead to dynamic compressibility effects
(Boussinesq approximation), but only modify buoyancy. Therefore, this setting not pose
any further complication.

4 Current Multiphase Formulation as Implemented in

Hydra-TH and a Proposal for its Correction

In this section, we first enumerate the steps that are the basis for the current multiphase
flow implementation in Hydra-TH. We then propose a correction to this formulation that
can leverage existing Hydra-TH multiphase code infrastructure.

4.1 Current Formulation as Implemented in Hydra-TH

1. First, update the volume fraction of each of the phases except the last one using Eq. 10.
Consider a linear-combination of forward and backward-Euler temporal discretizations
of the volume fraction equation Eq. 10:

α∗
k
− αn

k

∆t
+ θA(ṽn

k
)α∗

k
+ (1− θ)A(ṽn

k
)αn

k
= V

k
(33)

where for brevity V
k

= θV∗
k

+ (1− θ)Vn
k

. Solve for α∗
k

as

α∗
k

= [I + θ∆tA(ṽn
k
)− θ∆tΓ′

k
]−1(rhs) (34)

with a possible implicit treatment of terms in Γ
k

that are linear in α
k
.

12 CASL-U-2015-0296-000

2. Set α∗N = 1−
∑N−1

k=1 α
∗
k

3. Solve the energy equation (using a similar theta average) to obtain T ∗
k
.

4. Use equation of state (if necessary) to obtain microdensity ρ∗
k

5. Find macrodensity for each of the phases: ρ̂∗
k

= α∗
k
ρ∗

k
.

6. Use a theta-average of the forward- and backward-Euler time discretizations of the
momentum equation, but consider a second-order update to obtain

ρ̂n+1
k

ṽn+1
k
− ρ̂n

k
ṽn

k

∆t
= −θA(ρ̂∗

k
,vn

k
)ṽn+1

k
− (1− θ)A(ρ̂n

k
,vn

k
)ṽn

k

+θM
k
(ṽn+1

k
) + (1− θ)M

k
(vn

k
)

−
αn

k
+ α∗

k

2
∇pn − θα∗

k
∇δp. (35)

Here 0 ≤ θ ≤ 1. θ = 0 corresponds to forward-Euler, while θ = 1/2 to the trapezoidal
rule, and θ = 1 to the backward-Euler treatments respectively. Note that a (first order)
predicted state has been used to get the iterations started.

7. In a time-splitting sense consider an intermediate velocity ṽ∗
k
:

ρ̂∗
k
ṽ∗

k
− ρ̂n

k
ṽn

k

∆t
= −θA(ρ̂∗

k
,vn

k
)ṽ∗

k
− (1− θ)A(ρ̂n

k
,vn

k
)ṽn

k

+θM
k
(ṽ∗

k
) + (1− θ)M

k
(vn

k
)

−
αn

k
+ α∗

k

2
∇pn (36)

and do a linear solve to obtain ṽ∗
k
.

8. Taking the difference of the above two equations, and neglecting differences in the ad-
vective and parameterization terms (terms 1 and 3 on the rhs), somewhat like SIMPLE,
yields

ρ̂n+1
k

ṽn+1
k
− ρ̂∗

k
ṽ∗

k

∆t
= −θα∗

k
∇δp. (37)

The above equation may be re-written as

ρ̂n+1
k

ṽn+1
k

= ρ̂∗
k
ṽ∗

k
− θ∆tα∗

k
∇δp. (38)

And on taking divergence,

∇ ·
(
ρ̂n+1

k
ṽn+1

k

)
= ∇ ·

(
ρ̂∗

k
ṽ∗

k

)
− θ∆t∇ ·

(
α∗

k
∇δp

)
. (39)

9. Now, an anelastic approximation is made for the mixture momentum:

∇ ·
(∑

k

ρ̂n+1
k

ṽn+1
k

)
= ∇ ·

(
ρ̄n+1v̄n+1

)
= 0

= ∇ ·
(∑

k

ρ̂∗
k
ṽ∗

k

)
θ∆t∇ ·

((∑
k

α∗
k

)
∇δp

)

⇒ θ∆t∇2δp = RHS (40)

13 CASL-U-2015-0296-000

10. Solve Eq. 40 for δp and update phasic velocity using Eq. 38 after setting ρ̂n+1
k

= ρ̂∗
k

As mentioned previously, the main drawbacks of the current formulation are thought to lie
in steps 2 and 9 since neither of them is justifiable.

4.2 A Proposal to Correct the Formulation in Hydra-TH

We start with the current formulation in Hydra-TH and propose a minimal modification to
correct it and make it compatible with the development in Sec. 3.2 for low speed flows. This
proposal rests upon a) using the phasic continuity equation in place of the volume fraction
update equation and b) removing the anelastic approximation for mixture momentum. Con-
sequently, and like in Sec. 3.2, pressure update will be based on an explicit imposition of the
summation constraint on volume fraction.

1. First, consider a first-order linear-combination of forward and backward-Euler tem-
poral discretizations of the mass continuity equation Eq. 6:

ρ̂∗
k
− ρ̂n

k

∆t
+ θA(ṽn

k
)ρ̂∗

k
+ (1− θ)A(ṽn

k
)ρ̂n

k
= Γ

k
. (41)

where for brevity Γ
k

= θΓ∗
k

+ (1− θ)Γn
k
. Solve for ρ̂∗

k
as

ρ̂∗
k

= [I + θ∆tA(ṽn
k
)− θ∆tΓ′

k
]−1(rhs) (42)

with a possible implicit treatment of terms in Γ
k

that are linear in ρ̂
k
.

2. Solve the energy equation to obtain a predictor value T ∗
k
.

3. Use equation of state (if necessary) to obtain a first-order predictor value for micro-
density ρ∗

k

4. α∗
k

= ρ̂∗
k
/ρ∗

k
. Note that the predictor value of α∗

k
does not satisfy the summation con-

straint.

5. Use a theta-average of the forward- and backward-Euler time discretizations of the
momentum equation, but consider a second-order update to obtain

ρ̂n+1
k

ṽn+1
k
− ρ̂n

k
ṽn

k

∆t
= −θA(ρ̂∗

k
,vn

k
)ṽn+1

k
− (1− θ)A(ρ̂n

k
,vn

k
)ṽn

k

+θM
k
(ṽn+1

k
) + (1− θ)M

k
(vn

k
)

−
αn

k
+ α∗

k

2
∇pn − θα∗

k
∇δp. (43)

Here 0 ≤ θ ≤ 1. θ = 0 corresponds to forward-Euler, while θ = 1/2 to the trapezoidal
rule, and θ = 1 to the backward-Euler treatments respectively. Note that a (first order)
predicted state has been used to get the iterations started.

6. In a time-splitting sense consider an intermediate velocity ṽ∗
k
:

ρ̂∗
k
ṽ∗

k
− ρ̂n

k
ṽn

k

∆t
= −θA(ρ̂∗

k
,vn

k
)ṽ∗

k
− (1− θ)A(ρ̂n

k
,vn

k
)ṽn

k

+θM
k
(ṽ∗

k
) + (1− θ)M

k
(vn

k
)

−
αn

k
+ α∗

k

2
∇pn (44)

and do a linear solve to obtain ṽ∗
k
.

14 CASL-U-2015-0296-000

7. Taking the difference of the above two equations, and neglecting differences in the ad-
vective and parameterization terms (terms 1 and 3 on the rhs), somewhat like SIMPLE,
yields

ρ̂n+1
k

ṽn+1
k
− ρ̂∗

k
ṽ∗

k

∆t
= −θα∗

k
∇δp. (45)

The above equation may be re-written as

ρ̂n+1
k

ṽn+1
k

= ρ̂∗
k
ṽ∗

k
− θ∆tα∗

k
∇δp. (46)

And on taking divergence,

∇ ·
(
ρ̂n+1

k
ṽn+1

k

)
= ∇ ·

(
ρ̂∗

k
ṽ∗

k

)
− θ∆t∇ ·

(
α∗

k
∇δp

)
. (47)

8. Next, consider a linear-combination of forward and backward-Euler temporal dis-
cretizations of the mass continuity equation Eq. 6:

ρ̂n+1
k
− ρ̂n

k

∆t
+ θ∇ ·

(
ρ̂n+1

k
ṽn+1

k

)
+ (1− θ)∇ ·

(
ρ̂n

k
ṽn

k

)
= Γ

k
. (48)

where for brevity Γ
k

= θΓ∗
k

+ (1− θ)Γn
k
.

9. Inserting Eq. 47 into the previous equation leads to

ρ̂n+1
k
− ρ̂n

k

∆t
+ θ

[
∇ ·

(
ρ̂∗

k
ṽ∗

k

)
− θ∆t∇ ·

(
α∗

k
∇δp

)]
+ (1− θ)∇ ·

(
ρ̂n

k
ṽn

k

)
= Γ

k
(49)

This can be written symbolically as

ρ̂n+1
k

= R′
k
− θ′∇ ·

(
α∗

k
∇δp

)
. (50)

where R′
k

are known quantities. This is still not a PPE (for δp) since ρ̂n+1
k

is not known
either. At this point, consider two different paths:

(a) In the first path, we can consistently solve for ρ̂n+1
k

. In this scenario, at this point,
we are back to Eq. 23 and the imposition of the volume fraction constraint leads
to an equation that can be solved for δp as in Eq. 24

(b) In the second scenario, consider replacing the unknown ρ̂n+1
k

by the known quan-
tity ρ̂∗

k
.

ρ̂∗
k

= R′
k
− θ′∇ ·

(
α∗

k
∇δp

)
. (51)

Division by microdensity ρ∗
k

and summing over phases will lead to a PPE for
δp, but as noted earlier the summation constraint will not be satisfied. This
is what is presently implemented in Hydra-TH. If the summation constraint is
to be enforced, the only way out is to let the microdensity vary as a function
of p∗ = pn + δp. But this cannot obviously be done when microdensity ρ

k
is

prescribed to not be a function of pressure (ρ
k

constant or ρ
k

= ρ
k
(Tk). If the

macrodensity is assumed to vary, we are back in the first scenario.

In the case when microdensity ρ
k

is a function of pressure (and possibly tempera-
ture), an iteration of the PPE in conjunction with the equation of state could be
used to find a compatible set of microdensities ρ∗

k
. However, there does not seem

to be any advantage of this strategy over the previous one.

15 CASL-U-2015-0296-000

Figure 1: Mesh used in a simple test computation of two-phase flow past a cylinder.

Further, along the lines of Sec. 3.2.2, the use of an outer iterator would both allow for a
larger time-step and at the same time render the approximation of Eq. 24 by

∑
k

R̃∗
k

+ θα∗
k
∇2δp

ρ
k
(p∗, T ∗)

= 1. (52)

less of an issue since δp is now the iterate-level pressure increment and therefore approaches
zero at the termination of the outer iteration, See Appendix 1 for details.

5 A Computational Demonstration of the Shortcoming

in the Current Formulation

The computational infrastructure that has previously been put in place for the multiphase
flow solver in Hydra-TH has been described in previous milestone reports. Importantly, the
scalability of this infrastruture to massively parallel architectures has been demonstrated.
However, since this milestone report mainly deals with details related to formulation, we
consider a highly simplified setup and use it demonstrate the shortcoming related to the
previously discussed unit-summation constraint.

The highly simplified setup consists of an isothermal two-phase flow past a stationary
cylinder and uses a coarsely discretized mesh (Fig. 1). The diameter of the cylinder is 1 cm
and the velocity at the inlet is 1 cm/s for both phases. Initially, the volume fraction of liquid
phase (density of 1 g/cm3) is set at that of the gaseous phase (density 0.001 g/cm3) is set
at 1%. Volume fraction boundary codition at the inlet is set at 95% liquid phase and 5%
gaseous phase. The advancing front in the gaseous volume fraction is shown in Fig. 2.

As discussed previously, the current formulation chooses to impose the unit-summation
volume fraction constraint in an explicit fashion, whereas the correct formulation uses that
constraint to obtain an elliptic equation for pressure. Pressure itself in the current formula-
tion is obtained by making the mixture momentum non-divergent—and again as previously
discussed this approximation does not appear justifiable in any limit of multiphase flow.

Therefore, in order to assess the effect of these approximations, we choose to evaluate in
an independent fashion the extent of violation of the unit-summation constraint. That is,
even though that constraint is ostensibly satisfied in the current formulation, the extent of
dynamical inconsistency is assessed by referring back to the phasic-continuty equations and
evaluating

∑2
k=1 ρ̂k(x, t)/ρ̄k. Figure 3 shows this summation of the volume fraction at a time

16 CASL-U-2015-0296-000

Figure 2: Volume fraction front at a time when the front in volume fraction is close to the
cylinder (5 sec).

of the snapshot in Fig. 2. An error of about 3% is seen while noting that the gaseous volume
fraction changes from 1% to 5% across the front. While this error is suspected to have
further dynamical consequences along lines previously discussed, the absence of a correct
reference computation prevents us from quantifying them further. Finally, we mention that
the dynamical inconsistency in satisfying the unit-summation constraint was also verified in
another simplified setup—that of Poiseulle flow.

Figure 3: Sum of the volume fractions calculated as
∑

k ρ̂k/ρ̄k at a time when the volume
fraction front is close to the cylinder.

6 Software Layout

In this section we discuss the details of the current implementation of the multiphase ca-
pability in Hydra-TH. We begin with a description of the directory layout in the source
repository.

17 CASL-U-2015-0296-000

6.1 Source code directory layout

The code repository has a src sub-directory that contains all source code that comprises
Hydra. These sub-directories are

src/Base Contains virtual base classes that are used throughout the code base. An example
is the UnsPhysics virtual base class for general flow physics solution algorithms. The
Navier-Stokes and advection-diffusion classes are derived from this base class.

src/Control Input parameters that are read from the control file are parsed and then stored
in objects that are derived from the Control virtual base class. For example, the class
FVMINSControl in this directory is derived from the virtual base class Control. All
the physics-specific analysis options are represented by enum types that are defined in
the file Category.h.

src/DataMesh The class UnsMesh defines what an unstructured mesh in Hydra looks like.
It rests on the definition of the various supported element types (e.g. Hex8, Pyr5, etc.)
that are defined with their associated quadrature rules in their class definitions (re.g.
Hex8.h, Pyr5.h, etc.)

src/FEM Contains finite-element implementations of advection-diffusion, conduction, in-
compressible Navier-Stokes, Lagrangian dynamics, multi-material Lagrangian dynam-
ics, multi-scale Lagrangian dynamics, and rigid body dynamics. The various imple-
mentations derive from the UnsPhysics base class.

src/FVM Contains finite-volume implementations of advection, Burgers, Conduction, Eu-
ler, front tracking, incompressible Navier-Stokes, Lagrangian, level-set and multi-field
methods. Of particular interest for CASL THM are the incompressible Navier-Stokes
and multi-field implementations. Again, the various implementations derive from the
UnsPhysics base class.

src/GridTransfer Contains methods for transferring mesh data between parallel meshes.
This code is currently not used anywhere in Hydra.

src/InterfaceReconstruction This is a placeholder directory for interface reconstruction
code, it currently only contains an placeholder code.

src/IO This directory contains classes that are used for reading and writing Exodus files,
a simple serial ascii mesh files, GMV files, VTK files, and the Hydra specific restart
files. Additionally, the OutputDelegate class is defined here, that is used extensively
in Hydra to produce post-processed output to Hydra’s plot files.

src/LinearAlgebra Contains Hydra specific implementations of linear solvers. Mostly
these implementations are interfaces to specific Petsc solvers, and as such the Hydra
interface is somewhat Petsc specific.

src/LoadBalance Contains Hydra’s implementations related to load balancing operations.
Hydra relies on Trilinos’ Zoltan load balancing library.

src/Main This directory contains the Hydra main function (in hydra.C), that instantiates
the main Driver class (in Driver.C) and calls that class’ initialize, setup, and solve
methods.

18 CASL-U-2015-0296-000

src/Materials Contains various base classes for material properties. Examples of these
include base classes for ideal gas, density, and conductivity. All these material property
classes are derived from the MaterialProperty virtual base class.

src/Multiphysics The physicsManager class in this directory implements the the creation
of specific physics objects through a factory. Currently there is typically only one
physics object active at one time.

src/NKA A version of Neil Carlson’s nonlinear Krylov accelerator (NKA) code.

src/NLSolvers Contains a virtual base class (NonLinearSolver) that describes Hydra’s
nonlinear solver, and an implementation that uses Petsc’s SNES framework.

src/ParseControl Contains the parsing code that can process Hydra’s control file syntax.
The exact syntax of a the Hydra control files is implicitly defined by the methods in
this directory, but also described in Hydra’s user manual.

src/PSSDriver A LIME Hydra-TH model evaluator. This is an interface to LIME, a
framework for coupling multiple physics codes.

src/ThirdParty Contains third party software that Hydra relies upon. Currently, there
is only exodiff, a tool that is used in the Hydra regression tests to compare Exodus
plotfiles.

src/Utilities A collection of useful tools that can be used in conjunction with Hydra. See
the individual sub-directories for details.

6.2 Description of the classes relevant to the multiphase imple-
mentation

The source code relevant to the multiphase implementation in Hydra-TH is located in the
code repository in the directory

src/FVM/CCMultiField

The following classes are defined in this directory.

Hydra::CCMultiField The finite volume multi-field class. The public member functions
are:

::setup Setup the class, is called from

::initialize Initialize variables, allocate data, etc.

::finalize Deallocate data, finalize physics.

::solve Solve the physics problem.

::registerData Register data in Hydra’s data manager object.

::writeSolving Write a message identifying the physics solver.

::echoOptions Echo physics-specific options, this appears among the output at the
beginning of each Hydra run.

::initFieldMaps Initialize field maps, such as boundary conditions and forces, with
empty fields.

19 CASL-U-2015-0296-000

::addDirichletBC Add Dirichlet boundary conditions.

::addVelocityBC Add velocity boundary conditions.

::calcEdgeVar Apply BCs and calculate external edge data for a single field.

::enforceCompatibility Update the Nth volume fraction in cell centers by enforcing
unit-sum.

::addHeatSource Manage volumetric heat sources.

::setICs Set initial conditions.

::echoICs Echo initial conditions.

::addBodyForce Add a body force.

::addBousinesqForce Add a Boussinesq force.

::addDrag Add a drag force.

::addLift Add a lift force.

::fieldID For output delegates, get field ID from multi-field variable name.

::projectVelToNodes Interpolate an elem velocity component to nodes, applying
BCs

::write... Output delegate methods for writing data to plot files.

Hydra::CCMFDrag The virtual base class for drag momentum exchange terms. Is derived
from Hydra::MomentumExchange and requires derived classes to implement the ::echo,
::type and ::calcForceOp methods. The former two are used for simple screen output,
and the latter should implement the drag force operator.

Hydra::CCMFConstantDrag A constant drag momentum exchange model. Is derived
from Hydra::CCMFDrag.

Hydra::CCMFIchiiZuberDrag Ishii-Zuber drag momentum exchange model. Is derived
from Hydra::CCMFDrag.

Hydra::CCMFTomiyamaDrag Tomiyama drag momentum exchange model. Is derived
from Hydra::CCMFDrag.

Hydra::CCMFLift Virtual base class for lift momentum exchange terms. Is derived from
Hydra::MomentumExchange. It requires the methods ::echo, ::type, and ::calcForceOp
to be implemented in derived classes. The former two methods are for simple screen
output and to return the specific type of the model, and the latter should implement
the computation of the lift force operator.

Hydra::CCMFConstantLift A constant lift momentum exchange model that is derived
from Hydra::CCMFLift.

Hydra::CCMFTemperature A generic scalar temperature model. The ::assembleSystem
method assembles a generic scalar transport equation, ::formRhs forms the right hand
side, ::modifyLhs modifies the the left hand side for iteration with variable Cp, ::non-
constantSpecificHeatIteration iterates for variable Cp, ::convertTempVar and ::con-
verEnergyVar convert between temperature and energy, and ::solve solves the system.

20 CASL-U-2015-0296-000

Hydra::CCMFContinuity A generic scalar transport model. The ::assembleSystem method
assembles the system that needs to be solved, ::formRhs forms the right hand side, ::ap-
plyBCs applies boundary conditions, and ::solve solves the system.

Hydra::CCMFVolFrac A class that creates the volume fraction system and solves it. The
::assembleSystem method assembles the linear system, ::formRhs creates the right hand
side, ::applyVolFracBCs applies the volume fraction boundary conditions, and ::solve
solves the system.

Hydra::CCMFVolFracBC A class that implements volume fraction boundary conditions.

The typical layout of a Hydra class is such that the main method is called ::solve. Other
recurring methods are ::assembleSystem, typically a method that assembles a linear system,
::formRhs, a method that constructs the right hand side of the system to be solved, and
possibley other ::form... methods. Classes often have ::echo methods that are used to print
information about the object to the screen.

6.3 The CCMultiField::solve() method

The CCMultiField::solve() method is where Hydra’s multi-field solver is implemented. The
code flow is organized as follows:

• Write initial state and report header.

• Iterate while not done

– Estimate the stable time step

– Save the previous solution

– Advance the solution (either by a projection solve of by Picard method, NKA is
not yet implemented for multi-field solver.

– Write output to plot files, glob file, etc.

The projection solve is located in the CCMFSolve.C source file, the code flow is as follows:

• Solve continuity in terms of macro-density

• Update volume fractions, normalize as required – microdensity fixed

• Solve the energy transport equation

• Solve the momentum transport equations

• Solve the turbulence model

• Solve species transport equations – this is currently a no-op

• Compute a div-free velocity field update the velocity and pressure

• Compute residuals – currently this computes the divergence

• Update properties, e.g., turbulent viscosity

21 CASL-U-2015-0296-000

Note that the volume fraction equations are updated rather than solved. Commented out
code exists that indicates that the volume fraction equations would have to be solved here.

The Picard solver is located in the CCMFSolve.C source file, the code flow is as folows:

• Solve continuity in terms of macro-density

• Solve volume fraction transport

• Solve the energy transport equation

• Solve the momentum transport equations

• Solve the turbulence model

• Solve species transport equations – this is currently a no-op

• Compute a div-free velocity field update the velocity and pressure

• Compute residuals – currently this computes the divergence

• Update properties, e.g., turbulent viscosity

The Picard solver as it is implemented here is not iterating, but instead it takes only
one step. Some commented out code exists, that hints at how nonlinear Krylov acceleration
would be incorporated into the multi-field Picard iteration. Unlike in the single phase code
of Hydra, no multi-field nonlinear solvers have been implemented, yet.

The Nonlinear Krylov Accelerator is not yet implemented as part of the Picard solver.
Significant work would be required to accomplish that since it is a somewhat open research
questions how to effectively accelerate nonlinear systems of equations.

The projection solver calls the updateVolumeFraction method, which back-calculates the
volume fractions given the updated macro- and micro-densities. After that, the resulting
volume fractions are rescaled to sum to one for every cell in the mesh.

The Picard method calls the solveVolFracTransport method. In this method, the volume
fraction transport equation is solved for the first N-1 fields, and the Nth field’s volume
fraction is computed so that for each computational cell, all N volumefraction values sum to
one.

6.4 The Hydra Data Container

Data is managed in Hydra in the DataContainer class (in src/Base/DataContainer.h). this
class allows the developer to allocate and deallocate parallel arrays of various types with
various attributes. Examples of these attributes are variable centering, for example, face
centered or element centered. Another attribute is the layout of the array in memory (e.g.
linear, row major, or column major). Most importantly, any data that is needed to represent
the physical state of the problem should be allocated through the DataContainer mechanism,
since it is the one way in which Hydra writes data to its dump files (this is yet another one
of the possible attributes).

The following is an outline of how to allocate data using the DataContainer mechanism.
Note that the mesh class in Hydra is derived from the DataContainer class and it is used for
registering all data that needs to be dumped and/or plotted.

22 CASL-U-2015-0296-000

#include "DataContainer.h"

#include "UnsMesh.h"

UnsMesh *mesh;

DataIndex X = UNREGISTERED;

X = mesh->registerVariable(10, sizeof(double), "X");

double* x_data = mesh->getVariable<double>(X);

int get

// do things with the array x_data of length 10

// ...

freeVariable(X);

Note that by default, variables registered in the mesh’s data container are neither plotted
nor dumped. Please see the method DataContainer::registerVariable for documentation of
its default parameters.

There are methods in the DataContainer class that can be used to retrieve the attributes
associated with a variable that was registered in the DataContainer class.

7 UTri Integration

7.1 Introduction

When designing Hydra-TH for simulating multiphase flows, if we assume the effects of dy-
namical compressibility are not negligible then an equation of state is required to get the
density from pressure and internal energy. Since the fluid cannot be treated as an ideal gas,
steam tables must be used to properly get the density values. Hydra-TH has been integrated
with UTri [4, 5] which is a library that provides steam table information.

UTri, short for Unstructured Triangle Tabular Interpolation, is a library from Sandia
National Laboratories for accessing steam table information. UTri is distributed under the
BSD License and is thus appropriate to use with Hydra-TH. UTri reads in a NetCDF file
which stores a published model for thermodynamic and transport properties of water. Pub-
lished models have been created by the International Association for the Properties of Water
and Steam (IAPWS). See [5] for more details on water models and their verification. The
NetCDF files that UTri uses to provide steam table information can be generated with
SUTTG. SUTTG is discussed in Section 7.2.

Material properties are not independent of each other. An equation of state gives a
relation between the material properties where two properties must be known in order to
obtain the other properties. An example of this is the ideal gas law, PV = nRT , where P
is pressure, V is volume, n is the number of moles of gas, R is the ideal gas constant and
T is the temperature. The ideal gas law makes assumptions though which are not valid for
the multiphase flow of interest. The generally agreed upon best practices for this are to use
available steam table information. These tables work similarly to an equation of state in
that information is looked up by two material properties. UTri works by storing a steam
table for lookup. While the design for UTri was to be able to support different properties
as the independent values, the current version appears to only support using internal energy
and pressure as the independent properties. The other properties that UTri provides are:

• enthalpy

• entropy

23 CASL-U-2015-0296-000

• density

• temperature

• Gibbs free energy

• adiabatic sound speed

• isothermal bulk modulus

• isobaric heat capacity

• isochoric heat capacity

• material phase

• dynamic viscosity

• thermal conductivity

• surface tension

7.1.1 Code Integration

The original Hydra class for storing all of the material information was called Material.
It had two interfaces for providing material properties; a “legacy” interface with constant
material properties and a more general interface that supported varying material properties.
This dual interface was confusing and problematic to maintain. Additionally, supporting the
use of UTri to provide material properties as well through this would increase the complexity
level. Because of this, the code for storing the material information needed to be modified
before a clean interface for using UTri for material properties could be implemented. To
integrate UTri into Hydra, an abstract interface for a material was developed based on the
Material class, which was called AbstractMaterial. Figure 4 shows the class hierarchy for
materials in Hydra.

Figure 4: AbstractMaterial class hierarchy.

The AbstractMaterial class provides an interface for getting class objects for getting
specific material properties such as density, conductivity, etc. All of the specific material

24 CASL-U-2015-0296-000

property classes derive from the abstract MaterialProperty class. Typically a specific ma-
terial property will still have an abstract class along with concrete implementations. This
class hierarchy is shown for density in Figure 5.

Figure 5: DensityProperty class hierarchy.

One current performance issue with using Hydra-TH and UTri together is that Hydra-TH
uses density and internal energy as its two independent variables while the UTri steam tables
are currently only working with internal energy and pressure as the independent material
properties. To get around this incompatibility, the UTriMaterial class uses a secant method
to find the pressure based on the density and internal energy. This should be quite efficient
since for a given internal energy the pressure should monotonically be increasing with respect
to density.

7.1.2 Building Hydra-TH with UTri Support

The UTri source code is included in the Hydra TPL repository. The easiest way to build
UTri and have it linked in with Hydra-TH is to use the CMake “superbuild” script in the
source code’s scripts/superbuild sub-directory. This superbuild script will build Hydra-TH’s
required dependencies (e.g. NetCDF, PETSc, Trilinos, etc.) and if UTri is requested to be
used then it will also build it. This can be done by setting HYDRA UTRI to ON when
configuring the build.

If the needed third party libraries are already built then Hydra-TH can be built with the
following CMake variables set:

USE UTRI ON

UTRI INCLUDE DIR <directory location of the UTri header files>

UTRI LIBRARY <location of the UTri library libutri.a>

7.1.3 Hydra cntl Input

Hydra-TH uses a text input file, normally called a .cntl file, to specify material properties
along with other simulation specific information. See the Hydra-TH User’s Manual [6] for
more information on .cntl files. An example of the UTri material section of a .cntl file is:

utrimaterial

id <N>

filename <file>

end

Here, <N> is the material integer id to identify the material in the input mesh and
<file> is the name of the NetCDF file with the appropriate steam table in it.

25 CASL-U-2015-0296-000

7.2 SUTTG

SUTTG, short for Sandia Unstructured Triangle Table Generator, is also developed by San-
dia National Laboratories and distributed under the BSD License. SUTTG is a standalone
package and can be used to generate steam tables in the NetCDF file format that UTri
can use. This executable is called utriTableBuilder. It also has a viewer that can read in a
NetCDF file which is called utriTableDump. SUTTG is also distributed with several NetCDF
files for testing.

7.2.1 Building NetCDF Steam Tables with SUTTG

XML files are used to specify the parameters for building triangulated steam tables that are
stored in the NetCDF file. An example of one is:

<?xml version="1.0" encoding="UTF-8"?>

<EOSInference>

<RunSettings model="water" tabulation="TRECT"/>

<!-- Specification of the EOS model and its parameters -->

<EOSModel>

<water type="IAPWS95">

<IParam name="TEMP_EXTRAP" value="1"/>

</water>

</EOSModel>

<Tabulation A="18." Z="10.0" RRef="1." TRef="298." >

<TRECT type="utri" basename="h2o95highp-0p01optb" tolerance="0.01"

boundarySamples="100" regionSamples="2" meshvars="PE"

logvars="0" numthreads="8" algorithm="optimize" stepmultiplier="1.0">

<TBounds lower="290." upper="1073.15"/>

<PBounds lower="1.e6" upper="1.e8"/>

</TRECT>

</Tabulation>

</EOSInference>

The main options of interest here are:

EOSInference::EOSModel type The water type which can either by IAPWS95 or IAP-
WSIF97.

EOSInference::Tabulation::TRECT basename The base name of the file to be gener-
ated from SUTTG.

EOSInference::Tabulation::TRECT meshvars The independent variables for the ta-
ble. Currently only PE is supported.

EOSInference::Tabulation::TRECT tolerance The relative accuracy for the table.

EOSInference::Tabulation::TRECT::TBounds The temperature bounds for the table
in SI units.

26 CASL-U-2015-0296-000

EOSInference::Tabulation::TRECT::PBounds The pressure bounds for the table in SI
units.

More information on all of the utriTableBuilder options is available in the README in the
main source directory. The command to run utriTableBuilder with a given XML input file is
“utriTableBuilder <XML file>” where <XML file> is the name of the XML configuration
file.

8 Summary and Acknowledgments

A status report of the previous work on implementing a multiphase flow solver in Hydra-
TH has been given. Given problems with verification of the existing multiphase flow solver
in Hydra-TH a re-examination of the formulation was undertaken. Indeed, two steps in
the existing solver were identified that seem to undermine the current formulation. A new
formulation/algorithm is proposed that uses the existing computational mutiphase infras-
tructure. With the level of detail provided in this report, it is hoped that this report will
serve as a reference document for future further development of the multiphase capability in
Hydra-TH.

We want to acknowledge the contributions of the following people to multiphase de-
velopment in Hydra-TH: Mark A. Christon, Robert Nourgaliev, Jozsef Bakosi, and Lori
Pritchett-Sheats.

27 CASL-U-2015-0296-000

9 Appendix: Adding an Inner Iteration

1. (·)∗ is an estimate of (·)n+1

2. To start off the iterations let the thermodynamic state (ρ̂∗
k
, α∗

k
, ρ∗

k
, T ∗

k
, p∗) = (ρ̂n

k
, αn

k
, ρn

k
, T n

k
, pn)

3. Do steps 5 through 9 of Sec. 3.4

4. Now consider the approximated elliptic equation in (30):

∑
k

R̃∗
k

+ θα∗
k
∇2δp

ρ
k
(pin, T in)

= 1. (53)

5. Solve the above equation along with the energy equation in an inner iteration. To start
the iterations off (pin, T in) = (p∗, T ∗

k
)

6. Update ρ̂n+1
k

using Eq. 49, ṽn+1
k

using Eq. 46, and αn+1
k

(using p∗ and T ∗k to compute
microdensity).

7. Set (ρ̂∗
k
, α∗

k
, ρ∗

k
, T ∗

k
, p∗, ṽ∗

k
) = (ρ̂n+1

k
, αn+1

k
, ρn+1

k
, T n+1

k
, pn+1, ṽn+1

k
)

8. Go to step 8 if δp > ε

10 Appendix: Multi-field Navier Stokes Input

In this appendix we include the updated section on multi-phase flow in Hydra-TH’s user
manual. It describes in detail the input directives that are used in a Hydra-TH control file
to set up a multi-phase problem in Hydra-TH.

The cell-centered multifield Navier-Stokes solver uses a finite volume discretization with
a monotonicity-preserving advection algorithm and node-centered pressure to provide high-
accuracy solutions for multiple interacting fields. This appendix describes the keywords, that
in conjunction with Hydra’s general analysis keywords, may be used for calculating solutions
to multifield/multiphase flow governed by the ensemble-averaged Navier-Stokes equations.

10.1 cc multifield

Input for this physics is contained in the cc multifield - end block:

cc_multifield

...

[analysis and multifield Navier-Stokes specific keywords]

...

end

The remainder of this section describes the keywords specific to cc multifield – end.

28 CASL-U-2015-0296-000

10.2 nfields

This keyword specifies the number of fields (phases) the multifield flow is comprised of.
This keyword is mandatory. If this keyword is used multiple times, the last occurrence is
used. This keyword must appear before any field-specific keyword, e.g., initial or boundary
conditions.

Syntax:

nfields fields

Aliases: NONE

Parameter Description:

fields (integer, default=none) Specifies the number of simultaneously transported fields:
volume fractions (nfields−1 + the compatibility constraint, enforcing the unit-sum
requirement at all times), momentum (nfields), energy (nfields).

10.3 energy

This keyword activates the solution of the energy equation, and selects the form of the energy
equation. If this keyword is used multiple times, the last occurrence defines the form of the
energy equation.

Syntax:

energy form

Aliases: NONE

Parameter Description:

form (string, default=isothermal) Specifies the form of the energy equation.
isothermal No energy equation is solved – the flow is isothermal

temperature The energy equation is solved in terms of temperature
enthalpy The energy equation is solved in terms of specific enthalpy

10.4 hydrostat

Prescribe the hydrostatic pressure. This may be used in conjunction with prescribed pressure
boundary conditions, or by itself. When used by itself, the hstat keyword plays two roles. It
makes the pressure-Poisson equation non-singular and it permits the pressure for the system
to be uniquely determined. When the hstat keyword is used with prescribed pressure
boundary conditions, then it only specifies the unique hydrostatic pressure level for the
system. In either case, the pressure time-history and field output is adjusted to reflect the
specified hydrostatic pressure level.

Syntax:

hydrostat
nodeset setId loadCurveId amplitude
. . .

end

29 CASL-U-2015-0296-000

Note that multiple nodeset keywords may be specified within a single hydrostat
block. However, only the last nodeset specified is used to the hydrostatic pressure.

Aliases: hstat

Parameter Description:

setId (integer, required) Specifies the node-set where the hydrostatic condition will be
applied. Only a single node may be used in the nodeset.

loadcurveId (integer, required) Specify the load curve Id.
amplitude (float, required) Prescribed hydrostatic pressure level.

10.5 Initial Conditions

This section describes the keywords used to prescribe initial conditions.

10.6 Per-field initial conditions

The initial [fieldId] – end block provides an input mechanism for prescribing both per-field
and non-per-field initial conditions. This sections describes the initial conditions that can
be specified differently for each field in the multifield flow solution.

Syntax:

initial [fieldId]
velx vx
vely vy
velz vz
temperature T
enthalpy h
int energy e

end

Aliases: init

Parameter Description:

fieldId k or i[-:]j (blank, integer or range of integers, default=blank, i.e.,
all fields) Optional field Id or field Id range specification. If omitted
(as for single-field flows, all of the initial – end block is applied to all
nfields fields. If a single integer is specified, the full block is applied to
only the field specified, e.g., initial 3. If a range is given, e.g., initial
2− 4, the full block is applied to fields 2, 3, and 4. In the range syntax,
the hyphen can be replaced by a colon, i.e., initial 2 : 4 is equivalent
to initial 2− 4.

velx vx (float, default=0.0) x-component of velocity.
vely vy (float, default=0.0) y-component of velocity.
velz vz (float, default=0.0) z-component of velocity.

temperature T (float, default=0.0) Temperature. Alias: temp.
enthalpy h (float, default=0.0) Enthalpy.

int energy e (float, default=0.0) Internal energy.

30 CASL-U-2015-0296-000

10.7 Initial conditions

The initial – end block provides an input mechanism for prescribing non-per-field initial
conditions in the multifield solution algorithm. This section describes the initial conditions
that can only be specified for the continuous field in the multifield flow solution.

Syntax:

initial
tke k
eps ε
omega ω
turbnu νT

end

Aliases: init

Parameter Description:

tke k (float, default=0.0) Turbulent kinetic energy (k − ε and k − ω models).
eps ε (float, default=0.0) Turbulent dissipation rate (k − ε models).

omega ω (float, default=0.0) Inverse dissipation time scale (used for k−ω models).
turbnu k (float, default=0.0) Turbulent viscosity (Spalart-Allmaras and DES mod-

els).

10.8 Body Forces

This section describes the specification of various body forces for the momentum equation.

10.8.1 body force

Specifies body forces for the momentum equations. It may be time-varying, by specifying a
load curve. In addition, the body forces may be prescribed for a specific element set (element
block) or all element sets in the mesh.

Syntax:

body force [fieldId]
set setId
lcid loadCurveId
fx amplitude
fy amplitude
fz amplitude

end

Aliases: bodyforce

Parameter Description:

fieldId k or i[-:]j (blank, integer or range of integers, default=blank, i.e.,
all fields) Optional field Id or field Id range specification. If omitted,
all of the body force – end block is applied to all nfields fields. If
a single integer is specified, the full block is applied to only the field
specified, e.g., body force 3. If a range is given, e.g., body force

31 CASL-U-2015-0296-000

2− 4, the full block is applied to fields 2, 3, and 4. In the range
syntax, the hyphen can be replaced by a colon, i.e., body force 2 : 4
is equivalent to body force 2− 4.

set setId (integer, required) Specifies the element set on which the body force
will be applied. The value -1 specifies all sets.

lcid loadcurveId (integer, optional) Specify the load curve Id. If not specified,
then the force is assumed constant in time.

fx amplitude (float, default=0.0) Body force in the x-direction
fy amplitude (float, default=0.0) Body force in the y-direction
fz amplitude (float, default=0.0) Body force in the z-direction

10.8.2 boussinesqforce

Specifies body forces using the Boussinesq approximation to represent the buoyant forces
induced by temperature. This body force is only active when the energy equations are
solved in conjunction with the momentum equations. A load curve may be used to represent
the effects of a time-dependent gravity field. The Boussinesq body forces may be prescribed
for a specific element set (element block) or all element sets in the mesh.

Syntax:

boussinesqforce [fieldId]
set setId
lcid loadCurveId
gx amplitude
gy amplitude
gz amplitude

end

Aliases: bbodyforce

Parameter Description:

fieldId k or i[-:]j (blank, integer or range of integers, default=blank, i.e.,
all fields) Optional field Id or field Id range specification. If omitted
(as for single-field flows), all of the boussinesq force – end block is
applied to all nfields fields. If a single integer is specified, the full
block is applied to only the field specified, e.g., boussinesq force 3.
If a range is given, e.g., boussinesq force 2− 4, the full block is
applied to fields 2, 3, and 4. In the range syntax, the hyphen can
be replaced by a colon, i.e., boussinesq force 2 : 4 is equivalent to
boussinesq force 2− 4.

set setId (integer, required) Specifies the element set on which the force will be
applied. The value -1 specifies all sets.

lcid loadcurveId (integer, optional) Specify the load curve Id. If not specified,
then the force is assumed constant in time.

gx amplitude (float, default=0.0) Gravity force in the x-direction
gy amplitude (float, default=0.0) Gravity force in the y-direction
gz amplitude (float, default=0.0) Gravity force in the z-direction

32 CASL-U-2015-0296-000

10.9 Boundary Conditions

This section describes the specification of boundary conditions for the multifield Navier-
Stokes algorithm.

10.9.1 Per-Field Scalar Dirichlet Boundary Conditions

Per-field boundary conditions are boundary conditions specified for an individual field or a
range of fields. All per-field scalar Dirichlet boundary conditions are specified using the same
form, described in this section. The scalar values for per-field boundary conditions that may
be specified are given in Table 1.

Table 1: Per-Field Scalar Dirichlet Boundary Condition Keywords

BC Keyword Aliases Description
enthalpybc ebc, enthalpy Enthalpy, hk
temperaturebc tbc, temperature Temperature, Tk
intenergybc ibc Internal energy, ek
volfracbc volfrac Volume fraction, αk

Syntax:

BC [fieldId]
sideset setId loadCurveId amplitude
. . .

end

Note that multiple sideset keywords may be specified within a single BC block. See
Table 1 for valid values for keyword BC.

Parameter Description:

fieldId k or i[-:]j (blank, integer or range of integers, default=blank, i.e.,
all fields) Optional field Id or field Id range specification. If omitted
(as for single-field flows), all of the BC – end block is applied to all
nfields fields. If a single integer is specified, the full block is applied to
only the field specified, e.g., BC 3. If a range is given, e.g., BC 2− 4,
the full block is applied to fields 2, 3, and 4. In the range syntax, the
hyphen can be replaced by a colon, i.e., BC 2 : 4 is equivalent to BC
2− 4.

sideset setId (integer, required) Specifies the side-set on which the boundary con-
dition will be applied.

loadcurveId (integer, required) Specify the load curve Id.
amplitude (float, required) Scalar value of BC.

10.9.2 Scalar Dirichlet Boundary Conditions

The specification of non-per-field boundary conditions are similar to those used in single-field
flows. Non-per-field boundary conditions are specified for those quantities which only have a
single value in the multifield formulation, such as pressure. All non-per-field scalar Dirichlet
boundary conditions are specified using the same form, described in this section. The scalar
values that may be specified are given in Table 2.

33 CASL-U-2015-0296-000

Table 2: Scalar Dirichlet Boundary Condition Keywords

BC Keyword Aliases Description
tkebc tke Turbulent kinetic energy, k
epsbc eps Turbulent kinetic energy dissipation rate, ε
omegabc omega Turbulent kinetic energy dissipation time scale, ω
distancebc dist, distance Distance function
pressurebc pbc, pressure Hydrodynamic pressure, p
turbnubc turbnu Turbulent viscosity, νT

Syntax:

BC
sideset setId loadCurveId amplitude
. . .

end

Note that multiple sideset keywords may be specified within a single BC block. See
Table 2 for valid values for keyword BC.

Parameter Description:

sideset setId (integer, required) Specifies the side-set on which the boundary con-
dition will be applied.

loadcurveId (integer, required) Specify the load curve Id.
amplitude (float, required) Scalar value of BC.

10.9.3 Velocity Dirichlet Boundary Conditions

Dirichlet velocity boundary conditions are specified in a component form using a sideset and
load curve identifier.

Syntax:

velocitybc [fieldId]
velx sideset setId loadCurveId amplitude
vely sideset setId loadCurveId amplitude
velz sideset setId loadCurveId amplitude
. . .

end

Note that multiple velx sideset, vely sideset and velz sideset keywords may be
specified within a single velocitybc block.

Aliases: vel, velocity

Parameter Description:

fieldId k or i[-:]j (blank, integer or range of integers, default=blank, i.e.,
all fields) Optional field Id or field Id range specification. If omitted
(as for single-field flows), all of the velocitybc – end block is applied
to all nfields fields. If a single integer is specified, the full block is
applied to only the field specified, e.g., velocitybc 3. If a range is

34 CASL-U-2015-0296-000

given, e.g., velocitybc 2− 4, the full block is applied to fields 2, 3,
and 4. In the range syntax, the hyphen can be replaced by a colon, i.e.,
velocitybc 2 : 4 is equivalent to velocitybc 2− 4.

sideset setId (integer, required) Specifies the side-set on which the velocity bound-
ary condition will be applied.

loadcurveId (integer, required) Specify the load curve Id.
amplitude (float, required) Scalar value of BC.

10.9.4 Symmetry Velocity Boundary Conditions

This boundary condition specifies a velocity symmetry condition in a coordinate direction
on a side-set. The surface normal on the specified side-set is aligned with the coordinate
direction.

Syntax:

symmetrybc
velx sideset setId loadCurveId amplitude
vely sideset setId loadCurveId amplitude
velz sideset setId loadCurveId amplitude
. . .

end

Note that multiple velx sideset, vely sideset and velz sideset keywords may be
specified within a single symmetry block.

Aliases: symmetry

Parameter Description:

setId (integer, required) Specifies the side-set on which the velocity boundary condition
will be applied.

loadcurveId (integer, required) Specify the load curve Id.
amplitude (float, required) Scalar value of BC.

10.9.5 heatflux

Specifies a heat flux boundary condition.

Syntax:

heatflux
sideset setId loadCurveId amplitude
. . .

end

Note that multiple sideset keywords may be specified within a single heatflux block.

Aliases: NONE

Parameter Description:

setId (integer, required) Specifies the side-set on which the boundary condition will be
applied.

loadcurveId (integer, required) Specify the load curve Id.
amplitude (float, required) Surface-normal component of heat flux.

35 CASL-U-2015-0296-000

10.9.6 passiveoutflowbc

This passiveoutflowbc – end keywords provide a passive advective condition for use at out-
flow boundaries. This provides a mechanism to suppress artificial re-entrant flow conditions
when the outflow boundary is not normal to the primary flow direction.

Syntax:

passiveoutflowbc
sideset setId
. . .

end

Note that multiple sideset keywords may be specified within a single passiveout-
flowbc block.

Aliases: passiveoutflow

Parameter Description:

setId (integer, required) Specifies the side-set on which the boundary condition will be
applied.

10.9.7 pressureoutflowbc

This boundary condition is typically applied at outflow boundaries where the variation in
pressure due to vortical flow structures is large. This boundary condition applies an extrap-
olated pressure as a traction force on the momentum equations to avoid large pressure jumps
at an outflow boundary.

Syntax:

pressureoutflowbc
sideset setId
. . .

end

Note that multiple sideset keywords may be specified within a single pressureout-
flowbc block.

Aliases: pressureoutflow

Parameter Description:

setId (integer, required) Specifies the side-set on which the boundary condition will be
applied.

10.10 Heat Sources

This section describes the specification of various body forces for the momentum equation.

36 CASL-U-2015-0296-000

10.10.1 heat source

Specifies a volumetric heat source. It may be time-varying, by specifying a load curve. In
addition, the heat source may be prescribed for a specific element set (element block) or all
element sets in the mesh.

Syntax:

heat source [fieldId]
set setId
lcid loadCurveId
Q amplitude

end

Aliases: heatsource

Parameter Description:

fieldId k or i[-:]j (blank, integer or range of integers, default=blank, i.e.,
all fields) Optional field Id or field Id range specification. If omitted
(as for single-field flows), all of the heat source – end block is applied
to all nfields fields. If a single integer is specified, the full block is
applied to only the field specified, e.g., heat source 3. If a range is
given, e.g., heat source 2− 4, the full block is applied to fields 2, 3,
and 4. In the range syntax, the hyphen can be replaced by a colon, i.e.,
heat source 2 : 4 is equivalent to heat source 2− 4.

set setId (integer, required) Specifies the element set where the heat force will
be applied. The value -1 specifies all sets.

lcid loadcurveId (integer, optional) Specify the load curve Id. If not specified,
then the force is assumed constant in time.

Q amplitude (float, default=0.0) volume tic heat source

10.11 Pressure, Momentum and Transport Solvers

This section describes the linear solvers that are available for solving the pressure-Poisson,
momentum and auxiliary transport equations.

10.11.1 ppesolver

Define the attributes of the pressure-Poisson solver.

Syntax:

ppesolver
type method
amgpc AMGPCpackage
hypre type HyprePC
hypre coarsen type HypreCoarsenType
hypre smoother HypreSmoother
hypre smoother dn HypreSmootherDown
hypre smoother up HypreSmootherUp
hypre smoother co HypreSmootherCoarsest

37 CASL-U-2015-0296-000

interp type InterpOp
hypre nodal flag
trunc factor TruncFactor
pmax elements PMaxEl
agg num levels AggNumLevels
agg num paths AggNumPaths
strong threshold StrongThreshold
max rowsum MaxRowSum
smoother MLsmoother
cycle AMGcycle
solver AMGsolver
pre smooth AMGpreSmooth
post smooth AMGpostSmooth
levels AMGlevels
itmax Niter

itchk Ncheck

diagnostics flag
convergence flag
eps ε
zeropivot pivot

end

Aliases: ppesol

Parameter Description:

type method (string, default=AMG) Specifies the preconditioner – Krylov solver
combination. Values can be one of the following:

AMG Algebraic multigrid with the conjugate gradient method
SSORCG Successive over-relaxation preconditioner with the conjugate

gradient method
JPCG Jacobi preconditioner with the conjugate gradient method

amgpc AMGPCPackage (string, default=ML) Specifies the preconditioner package
for the AMG solver. (Only effective if type=AMG.) Values can be one
of the following:

ML Multilevel preconditioner package
HYPRE Hypre preconditioner package

hypre type HyprePC (string, default=BOOMERAMG) Specifies the preconditioner sub-package
for the Hypre/AMG solver. (Only effective if type=AMG and amgpc=HYPRE.)
Values can be one of the following:
BOOMERAMG BoomerAMG preconditioner

hypre coarsen type HypreCoarsenType (string, default=FALGOUT) Specifies the parallel coars-
ening algorithm for Hypre/BoomerAMG. (Only effective if type=AMG

and amgpc=HYPRE and hypre type=BOOMERAMG.) Values can be one
of the following:

CLJP Cleary-Luby-Jones-Plassman (a parallel coarsening algorithm
using independent sets

RUGE STEUBEN classical Ruge-Steuben on each processor, no boundary treat-
ment (not recommended!)

38 CASL-U-2015-0296-000

MODIFIED RUGE STEUBEN classical Ruge-Steuben on each processor, followed by a third
pass, which add coarse points on the boundaries

FALGOUT Falgout coarsening (uses RUGE STEUBEN first, followed by
CLJP using the interior coarse points generated by RUGE STEUBEN

as its first independent set)
PMIS PMIS-coarsening (a parallel coarsening algorithm using in-

dependent sets, generating lower complexities than CLJP,
might also lead to slower convergence)

HMIS HMIS-coarsening (uses one pass RUGE STEUBEN on each pro-
cessor independently, followed by PMIS using the interior
C-points generated as its first independent set)

hypre smoother HypreSmoother (string, default=HYB SGS) Specifies the smoother for both
the up and down cycles for Hypre/BoomerAMG. (Only effective if
type=AMG and amgpc=HYPRE and hypre type=BOOMERAMG.) Values
can be one of the following:

JACOBI Jacobi
SEQ SGS Gauss-Seidel, sequential (very slow!)
HYB GS hybrid Gauss-Seidel or SOR, forward solve

BACK HYB GS hybrid Gauss-Seidel or SOR, backward solve
HYB SGS hybrid symmetric Gauss-Seidel or SSOR

GE Gaussian elimination

hypre smoother dn HypreSmootherDown (string, default=HYB SGS) Specifies the smoother for
the down cycles for Hypre/BoomerAMG. (Only effective if type=AMG

and amgpc=HYPRE and hypre type=BOOMERAMG.) Values can be se-
lected from the list for HypreSmoother.

hypre smoother up HypreSmootherUp (string, default=HYB SGS) Specifies the smoother for the
up cycles for Hypre/BoomerAMG. (Only effective if type=AMG and
amgpc=HYPRE and hypre type=BOOMERAMG.) Values can be selected
from the list for HypreSmoother.

hypre smoother co HypreSmootherCoarsest (string, default=GE) Specifies the smoother for the
coarsest level for Hypre/BoomerAMG. (Only effective if type=AMG and
amgpc=HYPRE and hypre type=BOOMERAMG.) Values can be selected
from the list for HypreSmoother.

interp type InterpOp (string, default=HYB SGS) Specifies the parallel interpolation op-
erator for Hypre/BoomerAMG. (Only effective if type=AMG and amgpc=HYPRE

and hypre type=BOOMERAMG.) Values can be one of the following:

CLASSICAL Classical modified interpolation
DIRECT Direct interpolation (with separation of weights)

MULTIPASS Multipass interpolation
MULTIPASS WTS Multipass interpolation (with separation of weights)

EXT+I Extended+i interpolation
EXT+I-CC Extended+i (if no common C neighbor) interpolation
STANDARD Standard interpolation

STANDARD WTS Standard interpolation (with separation of weights)
FF FF interpolation

FF1 FF1 interpolation

hypre nodal flag (string, default=off) Enable/disable nodal systems coarsening for Hypre/BoomerAMG.
(Only effective if type=AMG and amgpc=HYPRE and hypre type=BOOMERAMG.)

39 CASL-U-2015-0296-000

Values may be one of the following:

off Unknown-based coarsening
on Nodal systems coarsening

trunc factor TruncFactor (float, default=0.0) Specify the truncation factor for the in-
terpolation in Hypre/BoomerAMG. (Only effective if type=AMG and
amgpc=HYPRE and hypre type=BOOMERAMG.)

pmax elements PMaxEl (integer, default=0) Set the maximum elements/row for the in-
terpolation for Hypre/BoomerAMG. (Only effective if type=AMG and
amgpc=HYPRE and hypre type=BOOMERAMG.)

agg num levels AggNumLevels (integer, default=0) Set number of levels of aggressive coars-
ening for Hypre/BoomerAMG. (Only effective if type=AMG and amgpc=HYPRE

and hypre type=BOOMERAMG.)
agg num paths AggNumPaths (integer, default=1) Set number of paths for aggressive coars-

ening for Hypre/BoomerAMG. (Only effective if type=AMG and amgpc=HYPRE

and hypre type=BOOMERAMG.)
strong threshold StrongThreshold (float, default=0.60) Specify the strength threshold for

Hypre/BoomerAMG. (Only effective if type=AMG and amgpc=HYPRE

and hypre type=BOOMERAMG.) For 2D Laplace operators 0.25 is a good
value, for 3D Laplace operators 0.5 or 0.6 is a better value. For elasticity
problems, a large strength threshold, such as 0.9, is often better.

max rowsum MaxRowSum (float, default=0.9) Set a parameter to modify the defini-
tion of strength for diagonally dominant portions of the matrix for
Hypre/BoomerAMG. (Only effective if type=AMG and amgpc=HYPRE

and hypre type=BOOMERAMG.)
smoother MLsmoother (string, default=ICC) Specifies the smoother for the ML AMG

solver. Only effective if type=AMG and amgpc=ML) Values can be one
of the following:

ICC Incomplete Cholesky factorization with no-fill
ILU Incomplete LU factorization with no-fill

SSOR Successive over-relaxation
CHEBYCHEV Chebychev polynomial smoother

cycle AMGcycle (string, default=V) Specifies the type of AMG cycle. Values for
can be one of the following:

V Use a V-cycle
W Use a W-cycle

solver AMGsolver (string, default=CG) Specifies the underlying Krylov solver to
be used with AMG. Values for can be one of the following:

CG Conjugate gradient method
BCGS Stabilized bi-conjugate gradient squared method

FGMRES Flexible generalized minimum residual method

pre smooth AMGpreSmooth (integer, default=1) Set the number of pre-smoothing sweeps
for AMG.

pre smooth AMGpostSmooth (integer, default=1) Set the number of post-smoothing
sweeps for AMG.

levels AMGlevels (integer, default=10) Set the maximum number of AMG levels
to use in the multigrid cycle.

itmax Nitmax (integer, default=500) Set the maximum number of iterations. In
the case of AMG, this is the maximum number of V or W cycles.

40 CASL-U-2015-0296-000

itchk Nitchk (integer, default=2) Set the number of iterations to take before
checking convergence criteria.

diagnostics flag (string, default=off) Enable/disable the diagnostic information from
the linear solver. Values for may be one of the following:
off Suppress diagnostic output
on Activate diagnostic output

convergence flag (string, default=off) Enable/disable the convergence metrics for the
linear solver. Values may be one of the following:
off Suppress convergence output
on Activate convergence output

eps ε (float, default=1.0e-5) Specify the convergence criteria for the linear
solver.

pivot pivot (float, default=1.0e-16) Specify the value of a zero pivot for precon-
ditioner.

10.11.2 momentumsolver

Define the attributes of the momentum solver.

Syntax:

momentumsolver
type method
restart Nrestart

itmax Nitmax

itchk Ncheck

diagnostics flag
convergence flag
eps ε

end

Aliases: momsol

Parameter Description:

type method (string, default=FGMRES) Specifies the preconditioner – Krylov solver
combination. Values can be one of the following:

FGMRES Flexible generalized minimum residual method
ILUFGMRES ILU-preconditoned FGMRES

GMRES Generalized minimum residual method
ILUGMRES ILU-preconditioned GMRES

restart Nrestart (integer, default=30) Specifies the number of restart vectors used
with GMRES/FGMRES.

itmax Nitmax (integer, default=500) Set the maximum number of iterations.
itchk Nitchk (integer, default=2) Set the number of iterations to take before

checking convergence criteria.
diagnostics flag (string, default=off) Enable/disable the diagnostic information from

the linear solver. Values for may be one of the following:
off Suppress diagnostic output
on Activate diagnostic output

41 CASL-U-2015-0296-000

convergence flag (string, default=off) Enable/disable the convergence metrics for the
linear solver. Values may be one of the following:
off Suppress convergence output
on Activate convergence output

eps ε (float, default=1.0e-5) Specify the convergence criteria for the linear
solver.

10.11.3 transportsolver

Define the attributes of the solver used for auxiliary transport equations. This includes the
energy equation, and transport equations associated with turbulence models.

Syntax:

transportsolver
type method
restart Nrestart

itmax Nitmax

itchk Ncheck

diagnostics flag
convergence flag
eps ε

end

Aliases: trnsol

Parameter Description:

type method (string, default=FGMRES) Specifies the preconditioner – Krylov solver
combination. Values can be one of the following:

FGMRES Flexible generalized minimum residual method
ILUFGMRES ILU-preconditoned FGMRES

GMRES Generalized minimum residual method
ILUGMRES ILU-preconditioned GMRES

restart Nrestart (integer, default=30) Specifies the number of restart vectors used
with GMRES/FGMRES.

itmax Nitmax (integer, default=500) Set the maximum number of iterations.
itchk Nitchk (integer, default=2) Set the number of iterations to take before

checking convergence criteria.
diagnostics flag (string, default=off) Enable/disable the diagnostic information from

the linear solver. Values for may be one of the following:
off Suppress diagnostic output
on Activate diagnostic output

convergence flag (string, default=off) Enable/disable the convergence metrics for the
linear solver. Values may be one of the following:
off Suppress convergence output
on Activate convergence output

eps ε (float, default=1.0e-5) Specify the convergence criteria for the linear
solver.

42 CASL-U-2015-0296-000

10.12 Momentum exchange

This section describes the specification of inter-field momentum exchange forces for the
multifield Navier-Stokes solver.

10.12.1 Drag force

Since the drag force acts between fields, it is specified between field-pairs.

10.12.2 Constant drag force

Syntax:

const drag [fieldId-pair]
dispid smaller/larger
coeff CD
bubble diam D
lcid loadCurveId
amp amplitude

end

Parameter Description:

fieldId-pair i[,&]j (two integers, default=all field-pairs) Optional field Id pair spec-
ification. If omitted, all of the const drag – end block is applied to all
nfields×(nfields−1)/2 field pairs. If a field-pair is specified, the full
block is applied to only the field-pair specified, e.g., const drag 2,3,
specifies the drag acting between fields 2 and 3. In the pair syntax,
the comma can be replaced by an ampersand, i.e., const drag 2,3
is equivalent to const drag 2&3. The first of the field Id pair must
always be lower than the second one.

dispid smaller/larger (string, optional, default=smaller) Specify the disperse Id
of the field Id pair: the smaller or the larger. This specification applies
regardless of the specification or absence of the field Id pair.

coeff CD (float, optional, default=0.1) Specify the constant drag coefficient.
bubble diam D (float, optional, default=0.1) Specify the constant drag coefficient.

lcid loadcurveId (integer, optional) Specify the load curve Id. If not specified,
then the force is assumed constant and unity in time.

amp amplitude (float, optional, default=1.0) Multiplier for the load curve.

10.12.3 Ishii-Zuber drag force

Syntax:

ishii zuber drag [fieldId-pair]
dispid smaller/larger
bubble diam D
lcid loadCurveId
amp amplitude

end

Parameter Description:

43 CASL-U-2015-0296-000

fieldId-pair i[,&]j (two integers, default=all field-pairs) Optional field Id pair spec-
ification. If omitted, all of the ishii zuber drag – end block is ap-
plied to all nfields×(nfields−1)/2 field pairs. If a field-pair is spec-
ified, the full block is applied to only the field-pair specified, e.g.,
ishii zuber drag 2,3, specifies the drag acting between fields 2 and 3.
In the pair syntax, the comma can be replaced by an ampersand, i.e.,
ishii zuber drag 2,3 is equivalent to ishii zuber drag 2&3. The
first of the field Id pair must always be lower than the second one.

dispid smaller/larger (string, optional, default=smaller) Specify the disperse Id
of the field Id pair: the smaller or the larger. This specification applies
regardless of the specification or absence of the field Id pair.

bubble diam D (float, optional, default=0.1) Bubble diameter.
lcid loadcurveId (integer, optional) Specify the load curve Id. If not specified,

then the force is assumed constant and unity in time.
amp amplitude (float, optional, default=1.0) Multiplier for the load curve.

10.12.4 Tomiyama drag force

Syntax:

tomiyama drag [fieldId-pair]
dispid smaller/larger
surface tension σ
bubble diam D
lcid loadCurveId
amp amplitude

end

Parameter Description:

fieldId-pair i[,&]j (two integers, default=all field-pairs) Optional field Id pair spec-
ification. If omitted, all of the tomiyama drag – end block is ap-
plied to all nfields×(nfields−1)/2 field pairs. If a field-pair is spec-
ified, the full block is applied to only the field-pair specified, e.g.,
tomiyama drag 2,3, specifies the drag acting between fields 2 and
3. In the pair syntax, the comma can be replaced by an ampersand,
i.e., tomiyama drag 2,3 is equivalent to tomiyama drag 2&3. The
first of the field Id pair must always be lower than the second one.

dispid smaller/larger (string, optional, default=smaller) Specify the disperse Id
of the field Id pair: the smaller or the larger. This specification applies
regardless of the specification or absence of the field Id pair.

surface tension σ (float, optional, default=0.1) Surface tension.
bubble diam D (float, optional, default=0.1) Bubble diameter.

lcid loadcurveId (integer, optional) Specify the load curve Id. If not specified,
then the force is assumed constant and unity in time.

amp amplitude (float, optional, default=1.0) Multiplier for the load curve.

10.12.5 Lift force

Since the lift force act between fields, it is specified between field-pairs.

44 CASL-U-2015-0296-000

10.12.6 Constant lift force

Syntax:

const lift [fieldId-pair]
dispid smaller/larger
coeff CD
lcid loadCurveId
amp amplitude

end

Parameter Description:

fieldId-pair i[,&]j (two integers, default=all field-pairs) Optional field Id pair spec-
ification. If omitted, all of the const lift – end block is applied to all
nfields×(nfields−1)/2 field pairs. If a field-pair is specified, the full
block is applied to only the field-pair specified, e.g., const lift 2,3,
specifies the lift acting between fields 2 and 3. In the pair syntax, the
comma can be replaced by an ampersand, i.e., const lift 2,3 is equiv-
alent to const lift 2&3. The first of the field Id pair must always be
lower than the second one.

dispid smaller/larger (string, optional, default=smaller) Specify the disperse Id
of the field Id pair: the smaller or the larger. This specification applies
regardless of the specification or absence of the field Id pair.

coeff CD (float, optional, default=0.1) Specify the constant lift coefficient.
lcid loadcurveId (integer, optional) Specify the load curve Id. If not specified,

then the force is assumed constant and unity in time.
amp amplitude (float, optional, default=1.0) Multiplier for the load curve.

10.13 time integration

Define the attributes of the time-integration method used to solve the Navier-Stokes equa-
tions. The time-step control may be either fixed time-step or using a time-step based on a
fixed CFL condition.

The fixed CFL time-step control uses the initial velocity field and with the initial CFL
number CFL0 to estimate the time-step. For all subsequent time-steps, CFLmax is used
estimate the time-step. When the time-step can increase based on CFLmax, the growth is
based on the time-step scale factor α. An upper bound on the time-step is set with ∆tmax.

Syntax:

time integration
type method
CFLinit CFL0

CFLmax CFLmax
dtmax ∆tmax
dtscale α
thetaa θA
thetak θK
thetaf θF

end

45 CASL-U-2015-0296-000

Aliases: timeint

type method (string, default=fixed cfl) Specifies the time-step control method.
Values can be one of the following:
fixed cfl Sets the time-step based on a fixed maximum CFL condition

using CFLmax
fixed dt Uses a fixed time-step based on ∆tmax

CFLinit CFL0 (float, default=1.0) Specifies the initial CFL number to use at startup
with the fixed CFL time-step control

CFLmax CFLmax (float, default=2.0) Set the maximum CFL number to use with
the fixed CFL time-step control

dtmax ∆tmax (float, default=1.0) Set the maximum time step that can be used
with the fixed CFL time-step control

dtscale α (float, default=1.025) Factor used to increase the time-step with the
fixed CFL time-step control

thetaa θA (float, default=0.5) Time-weight for the advective terms. By default,
the time-weight uses a second-order centering in time. For explicit
advection, θA = 0.0, and for an implicit treatment, θA = 1.0.

thetaK θK (float, default=0.5) Time-weight for the viscous/diffusive terms. By
default, the time-weight uses a second-order centering in time. For an
explicit treatment, θK = 0.0, and for an implicit treatment, θK = 1.0.

thetaF θF (float, default=0.5) Time-weight for source terms. By default, the time-
weight uses a second-order centering in time. For an explicit treatment,
θK = 0.0, and for an implicit treatment, θK = 1.0.

10.14 solution method

The keywords described in this section are provided to set/modify the parameters associ-
ated with the solution strategy and control of non-linear iterations (when appropriate). All
keywords are defined within the solution method -- end input block.

Syntax:

solution method
strategy solution method
pressure update method
itmax Nitmax

eps ε
eps dist εdist
eps p0 εp0
velrelax αv
enerelax αe
nutrelax αν
tkerelax αk
epsrelax αε
convergence on/off
diagnostics on/off

end

Aliases: none

46 CASL-U-2015-0296-000

Figure 6: Fixed CFL time-step control where α = 1.025 sets the slope of increasing time-step
vs. time curve, and ∆tmax = 0.05 sets the upper-bound for the time-step.

Parameter Description:

strategy solution method (string, default=projection) Specifies the solution method.
Valid solution methods include:

projection Activates the semi-implicit projection algorithm
picard Activates the fully-implicit, projection-preconditioned, Pi-

card algorithm.
itmax Nitmax (integer, default=5) Defines the maximum number of non-linear it-

erations to be taken during each time step.
eps ε (float, default=1.0E-4) Define the convergence criteria for non-linear solver.

eps dist εdist (float, default=1.0E-5) Convergence criteria for normal-distance func-
tion solved during initialization.

eps p0 εp0 (float, default=1.0E-5) Convergence criteria for initial div-free projection
and initial pressure computation performed during initialization.

velrelax αv (float, default=1.0) Under-relaxation parameter for the velocity udpate.
Valid values are 0.0 ≤ αv ≤ 1.0.

enerelax αe (float, default=1.0) Under-relaxation parameter for the energy udpate.
Valid values are 0.0 ≤ αe ≤ 1.0.

nutrelax αν (float, default=1.0) Under-relaxation parameter for Spalart-Allmaras
variable. Valid values are 0.0 ≤ αν ≤ 1.0.

47 CASL-U-2015-0296-000

tkerelax αk (float, default=1.0) Under-relaxation parameter for the turbulent kinetic
energy. Valid values are 0.0 ≤ αk ≤ 1.0.

epsrelax αε (float, default=1.0) Under-relaxation parameter for the turbulent dissi-
pation rate . Valid values are 0.0 ≤ αε ≤ 1.0.

convergence on/off (string, default=off Write information about the non-linear conver-
gence history to the conv file when using the picard solution method.

off Disable writing the non-linear convergence history.
on Enable writing the non-linear convergence history.

diagnostics on/off (string, default=off Write disagnostic information about the non-
linear convergence history to the screen when using the picard solution
method.

off Disable writing diagnostistics during the non-linear iteration.
on Enable writing diagnostics during the non-linear iteration.

References

[1] E. Baglietto and M. A. Christon, Demonstration & assessment of advanced mod-
eling capabilities for multiphase flow with sub-cooled boiling, tech. rep. CASL Milestone
Report L2.THM.P7.01.

[2] J. Bakosi, M. Berndt, M. Christon, B. Nadiga, and L. Pritchett-Sheats,
Demonstration of multiphase flow with hydra-th, tech. rep., Los Alamos National Labo-
ratory, 2014. CASL Milestone Report THM.CFD.P8.01.

[3] J. Bakosi, M. A. Christon, and L. A. Pritchett-Sheats, Hydra-th advanced
capabilities, tech. rep., Los Alamos National Laboratory, 2013. CASL Milestone Report
THM.CFD.P6.01, LANL Tech. Report LA-UR 13-20572.

[4] J. H. Carpenter and N. Belcourt, Tabular water properties interface for
hydra-th, Tech. Rep. SAND2013-2697, Sandia National Laboratories, 2013. CASL
THM.CFD.P6.03 Milestone Report.

[5] J. H. Carpenter, N. Belcourt, and R. Nourgaliev, General purpose steam
table library, Tech. Rep. SAND2013-7328, Sandia National Laboratories, 2013. CASL
L3:THM.CFD.P7.04 Milestone Report.

[6] M. A. Christon, J. Bakosi, and R. B. Lowrie, Hydra-TH User’s Manual, Version:
LA-CC-11120, tech. rep., Los Alamos National Laboratory, November, 2011. Tech. Rep.
LA-UR-12-23181.

[7] D. A. Drew and S. L. Passman, Theory of multicomponent fluids, vol. 135, Springer
Science & Business Media, 2006.

48 CASL-U-2015-0296-000

