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Abstract 

 
In this report, an uncertainty quantification and data assimilation study is performed on 

CASL Progression Problem Number 9, a quarter-core, three-dimensional model representative of 
Watts Bar Nuclear Unit 1 Cycle 1. Simulations are completed using the VERA-CS core 
simulator. The uncertainty is quantified before and after a data assimilation study is performed to 
calibrate the cross-sections and a few thermal-hydraulics parameters.  

First, the uncertainties of several quantities of interest are quantified via three different 
methods proposed in a previous milestone report [1]. The performance of the proposed methods 
is compared and analyzed. Second, a surrogate based data assimilation method is proposed and 
tested in conjunction with QUESO-DRAM. The data assimilation study is used to update the 
uncertainty distribution for the many group cross-sections and thermal-hydraulic parameters 
utilizing responses of interest based upon synthetic experimental data appropriate for CASL 
Progression Problem Number 9. Finally, these updated parameter uncertainties were used to re-
quantify the uncertainties of the quantities of interest for CASL Progression Problem Number 9 
and then compared with the uncertainties quantified prior to the data assimilation.  
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1. Introduction and Theory 
In a previous milestone report, efficient uncertainty quantification algorithms were proposed 

and tested with CASL Progression Problem Number 6 [1], a single fuel assembly represented in 
three dimensions, utilizing the VERA-CS core simulator and ROMUSE uncertainty 
quantification software. The first part of this report applies the previously proposed methods to 
quantify the uncertainties of the quantities of interest for CASL Progression Problem Number 9, 
a quarter-core, three-dimensional model that is representative of Watts Bar Nuclear Unit 1 Cycle 
1 (WB1C1); therefore, it is important for the reader to refer to Ref. [1]. The second part of this 
report introduces an efficient surrogate based data assimilation method. The method is tested via 
synthetic data and then the results of this part are used in the third part to exemplify the effects of 
utilizing the data assimilation results to re-quantify the uncertainties of the quantities of interest 
for CASL Progression Problem Number 9.  

Data assimilation is a mathematical methodology used for establishing a connection between 
experimental and operational data and simulation completed employing mathematical models. 
Any mathematical model is an approximate representation of the real phenomenon of interest. 
The purpose of data assimilation is to improve the performance of the mathematical model by 
calibrating the model’s parameters. Model-based assimilation of experimental measurements (i.e. 
data assimilation) has been used in various engineering fields (including nuclear engineering) for 
the enhancement of the predictions made by mathematical models during simulations [2-3].  

Overall, there are two major problems facing the data assimilation practice. First, the 
computational burden associated with running the high fidelity models (reactor core simulators). 
Second, the curse of dimensionality associated with the number of model parameters that will 
need to be calibrated. In contrast to uncertainty quantification, the computational cost of data 
assimilation increases with the number of parameters to be calibrated. In nuclear reactor 
simulation, the number of neutronics parameters is large due to the fact that the nuclear data 
cross-sections libraries are detailed for high fidelity modeling and simulation.  

Data assimilation utilizing the long operational experience with light water reactors could 
improve simulation fidelity. In this report the Delayed Rejection Adaptive Metropolis algorithm 
(DRAM) [4] will be used in conjunction with reduced order modeling, such that the end result is 
a feasible and applicable algorithm for data assimilation for large-scale reactor simulation 
applications.  

Reduced order modeling can facilitate the two major problems noted earlier. Surrogates can 
address the first problem (the computational burden associated with running the high fidelity 
reactor core simulators). On the other hand, reducing the dimensionality of the parameters of 
interest using the algorithms such as those proposed in Ref. [1,5,6] will address the second 
problem (the curse of dimensionality). Ref. [2] introduced a high-order predictive model 
calibration algorithm and applied it to relatively large-scale applications, while Ref. [3] 
performed data assimilation for a few thermal-hydraulics parameters using a lower-order 
surrogate to replace the actual thermal-hydraulics simulator (i.e. COBRA-TF). This report will 
use polynomial surrogate models to substitute for the original coupled models (MPACT, 
COBRA-TF and ORIGEN) making up VERA-CS (see Figure 1) to calibrate cross-sections (high 
dimensional parameters) along with the few thermal-hydraulics parameters considered here.  
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Figure 1.Flow diagram of the VERA-CS computer code. 

 
A subspace-based surrogate model ( f ) will be used to replace the model of interest ( f ). 

Ref. [2, 3, 7] introduced a methodology previously developed for goal-oriented surrogate 
modeling. In this report a gradient free approach is used to construct the basis of the lower 
dimensional subspace approximation. A 2nd order goal-oriented subspace can be constructed as 
follows:  

 2

1 2
T Tf f S x S x        

where f  is the quantity of interest (e.g. multiplication factor, maximum fuel pin power and 
maximum fuel pin temperature), and x  is the variation in the parameters of interest from the 
reference values (e.g. cross-sections, gap conductivity and grid spacer loss coefficient).  

 The goal of the surrogate here is to perform data assimilation analysis. The uncertainty and 
mean of each parameter will be updated; therefore, for the surrogate construction the 
perturbations ( x ) will be generated randomly within an interval of interest. Once the basis of 
the subspace is determined ( U ), projecting into the lower dimensional subspace, an efficient 
goal-oriented surrogate can be constructed as follows:  
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where randx  is a random input vector sampled to generate a random sample of the input 
parameters. Given that xn rU   and T r

randx   U   then 1, 1
T T r
r  U  and

2, 2
T T r

r  U  . Hence in order to determine the unknown elements of 1,r and 2,r  VERA-CS 
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needs to be run at least 2r times from which the coefficients are determined by least squares 
estimation.  

Moreover, in the calculation of the posterior Probability Density Function (PDF) for the 
parameters, the computational cost is dependent on the dimensionality of the parameter space 

p  (i.e. p). Hence, by recasting the problem into a lower dimensional subspace approximation 
(i.e. r ), the number of calibrated parameters is reduced from p to r, where the uncertainty 
information can be mapped from the reduced space to the full dimensional space as follows: 

                                                              

 T
x C UC U   (2)   

where xC  is the covariance matrix in the full dimensional parameter space and C  is the 
covariance in the reduced space as determined by the assimilation process. Note that T UU I
where this approximation is justified in Ref. [ 5, 8, 9]. In addition, running the data assimilation 
analysis using the surrogate model has a negligible computational cost compared to the 
computational cost associated with simulating using the original model (high fidelity simulator).  

The following is a summary of the algorithm for Subspace-Based Data Assimilation 
(SBDA):  

1. Construct the basis of the lower dimensional subspace approximation of the parameter space 
(U). 

2. Construct the goal-oriented surrogate model ( f ). 

3. Run DRAM with the surrogate model f  and replace the input parameter space ( p ) with 
the reduced space r . 

In the following sections, the SBDA will be used to perform parameter calibration. The 
parameters of interest are the nuclear data cross-sections (high dimensional parameter) and two 
thermal-hydraulics parameters (gap conductivity and grid spacer loss coefficients). In this report, 
we deal with the data assimilation algorithm (i.e. DRAM) as a black box; the real contribution of 
the work reported herein is the replacement of the original high fidelity model with a surrogate 
that has negligible computational cost to run. 

 

2. Prior Uncertainty Quantification  
Progression Problem Number 9 denotes a full core, 3D representation of WB1C1 with 

neutronics coupled to thermal-hydraulics and depletion feedbacks. In this problem both fuel and 
burnable absorbers are depleted throughout the first cycle. However, due to computational 
resource limitations, this section will perform the uncertainty quantification for a portion of 
Cycle 1 using several depletion steps. Specifically, the core is depleted to 160 effective full 
power days (EFPD) via 9 depletion steps (0, 9, 32, 45, 60, 80, 100, 120, 160 EFPD). Table 1 
shows a summary of the core problem features while Figure 2 represents the layout and 
enrichment regions of the core.  
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Table 1. Progression Problem Number 9 features and design properties. 

Property Value Details 

Fuel Assemblies 193 Modeled in quarter symmetry 

Enrichment 3.1%, 2.6%, 2.1% 17 Assemblies with 3.1%, 19 
Assemblies with 2.6%, 20 

Assemblies with 2.1% 

Control Rods 8 banks of B4C Total of 18 rods in quarter symmetry. 

Burnable Inserts 6,12,4,3,2 inserts of Pyrex 
burnable poison rodlet 

clusters. 

These burnable poison inserts consist 
of 24, 20, 16, 12, 8 rod-lets, 

respectively. 

 

 

Figure 2. Core layout in quarter core symmetry. Enrichment and Pyrex rods (left) and core bank 
positions (right). For more information about the banks’ worth (A, B, C, D, SA, SB and SD) 

refer to [11]. 

 

In this section, two approaches for multi-physics uncertainty propagation will be introduced, 
used and compared. The first approach is a linear approach that utilizes the obtained subspace 
along with a Karhunen-Loève (KL) expansion-based approach to quantify the uncertainty in 
quantities of interest calculated by multi-physics coupled models (Multi-Physics Efficient 
Uncertainty Quantification – MP-EUQ). The second approach, Surrogate Based Uncertainty 
Quantification (SBUQ), is a surrogate model based approach that replaces the original complex 
model with a simple surrogate form (e.g. polynomial, Gaussian process surrogate) and then 
quantifies the uncertainties via a Monte Carlo approach. Both of these approaches are 
summarized in Ref. [1]. In this report VERA-CS models (MPACT- COBRA-TF- ORIGEN) will 
be replaced by surrogates. Surrogates will be constructed separately for each of these models and 
then coupled to formulate an approximation to VERA-CS.   
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 As in Ref. [1], the gradient free approach is used to obtain the reduced dimensional input 
parameter space in the form of the basis of the lower dimensional subspace, which is then used to 
perform linear uncertainty propagation via the MP-EUQ. In addition, the basis is used to 
construct the surrogate necessary for SBUQ.  

 In general, the surrogate quality can be evaluated by examining the residual errors of the 
quantity of interest, determined by taking the difference of predicted values from the surrogate 
and the original model. For example, the current surrogate is constructed for the purpose of UQ; 
therefore, 30 extra random samples are generated employing the parameters’ PDFs and Monte 
Carlo sampling. The perturbations are created in all the parameters (i.e. the gap conductivity 
(hgap) uncertainty of +50%, grid spacer loss coefficient uncertainty of +4%, and with cross-
section perturbations generated employing the “44groupcov” covariance library distributed with 
SCALE6.1 [10]). For the gradient free approach, a subspace of rank 60 (60 degrees of freedom) 
was found sufficient to capture the variations of the parameters in the depletion cycle of interest 
with an L2 – norm error upper bound of < 1% (for more details on the calculation of this error 
upper bound please consult Appendix A.1), so used in the results to now be reported upon. Table 
2 shows the results of the error test of the 2nd order surrogates in terms of the surrogate form-
related uncertainties: Root Mean Square (RMS) and the residuals distribution. Figure 3 through 
Figure 5 shows the quantity of interest residuals associated with the surrogate computed for 
different parameter sets generated by varying all the parameters simultaneously. For each sample 
the maximum error point occurring at all depletion steps is plotted, therefore we have only 30 
points per plot. First, the surrogates were built separately for each component (MPACT 
COBRAT-TF and ORIGEN) and then the performance of thee coupled surrogate models was 
compared to the original VERA-CS sequence via 30 extra samples. The figures show that the 2nd 
order surrogates of the form represented by Eq. (1) can predict the multiplication factor (keff), 
maximum fuel pin power, and maximum fuel pin temperature with sufficient accuracy relative to 
the uncertainty estimation application. 

 Just like earlier work reported in [1], these surrogates will be used to quantify the uncertainty 
in the quantity of interest (including the addition of the surrogate form - related uncertainty 
which is defined in Appendix A.2) and then compared with the uncertainties estimated via a 
forward Monte Carlo approach (MCUQ) and finally compared with the uncertainty estimated by 
the MP-EUQ. Statistical samples are drawn using VERA-CS original models’ sequences and 
then compared to samples drawn from the surrogate model replacing the original VERA-CS. 
Due to computer resource limitations, Monte Carlo sampling via the original model was limited 
to 50 samples which resulted in large statistical uncertainties associated with the limited 
sampling.  

 

 

 

 

 

 

CASL-U-2016-1054-000



10 
 

Table 2. Features of the Surrogate. 

Surrogate 
Order 

RMS Number of 
Construction 
Data Points 

Number of 
Extra 

Validation 
Data Points 

Residuals 
Distribution 

Surrogate Form 
– Related 

Uncertainty 

(Appendix 
A.2* 

2nd order 
effk   20.07 pcm 120 30 iid 35.16 pcm 

maxP  0.01 W/cm iid 0.01 W/cm 

maxT  3.0661 Co iid 1.12o 

*The numbers here represent the uncertainty in the surrogate response due to the uncertainty in the surrogate 
coefficients estimated by Eq. (5) which are then used in a Monte Carlo process to estimate the surrogate-form 
related uncertainty.  
 

Table 3 shows the contribution of each of the parameter’s variance into the overall variance 
in the quantities of interest (Q). Note that the values reported in this table are computed as 
follows:  

 
2

2
int

100%parameter Q

jo Q








   (3) 

Table 3. Parameter contributions to the overall uncertainty (Refer to Eq.(3)).  

Parameter QoI 0 
EFPD 

9 
EFPD 

32 
EFPD 

45 
EFPD 

60 
EFPD 

80 
EFPD 

100 
EFPD 

120 
EFPD 

160 
EFPD 

Cross-
Sections 

keff 94.1% 94.1% 92.2% 92.2% 90.3% 92.2% 92.2% 94.1% 94.1% 
mp 8.4% 9.0% 10.2% 9.0% 10.2% 10.9% 12.3% 11.6% 11.6% 
mt 0.4% 0.4% 0.5% 0.3% 0.4% 0.4% 0.5% 0.4% 0.5% 

Gap 
Conductivity 

keff 5.8% 6.3% 6.3% 5.8% 6.8% 6.3% 6.3% 6.8% 6.3% 
mp 96.0% 98.0% 96.0% 96.0% 96.0% 98.0% 94.1% 96.0% 98.0% 
mt 86.5% 84.6% 86.5% 82.8% 84.6% 84.6% 84.6% 84.6% 84.6% 

Grid Spacer 
Loss 

Coefficient 

keff 10-4% 10-4% 10-4% 10-4% 10-4% 10-4% 10-4% 10-4% 10-4% 
mp 10-6% 10-6% 10-6% 10-6% 10-6% 10-6% 10-6% 10-6% 10-6% 
mt 10-4% 10-4% 10-4% 10-4% 10-4% 10-4% 10-4% 10-4% 10-4% 

 

 Details of the uncertainties estimated via the MP-EUQ (linear Karhunen Loeve-based 
approach), SBUQ (Monte Carlo sampling 2nd order surrogates) and forward MCUQ (Monte 
Carlo sampling via original model) are shown in Table 4 through Table 6. In these tables Q  
denotes the standard deviation in the quantities of interest and 

Q
  denotes the standard 

deviation in Q due to Monte Carlo sampling (Q = keff, maximum fuel pin power (mp), maximum 
fuel pin temperature (mt)). Both  Q  and 

Q
  are reported relative to the nominal value. 
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Whenever the surrogate was used the uncertainty was estimated via 500 samples divided into 5 
groups, while for the brute force MC calculations a total of 50 samples were used and divided 
into 5 groups. One can notice that for the multiplication factor (keff) the uncertainty estimated via 
the MP-EUQ is within one standard deviation (± σ) of the uncertainties estimated via the Monte 
Carlo approaches (MCUQ and SBUQ); however, for the maximum fuel pin power and the 
maximum fuel pin temperature some of the uncertainty values estimated by the MP-EUQ are 
much greater separated than one standard deviation. The reason for that might be due to the fact 
that the MP-EUQ is a linear approach assuming that the response of interest is a linear function 
of the parameters. The results in Table 4 indicate that the linear assumption is sufficient for the 
multiplication factor, while Table 5 and Table 6 indicate that the linear assumption is not 
sufficient for the maximum fuel pin power and maximum fuel pin temperature. This indicates 
that the future uncertainty quantification analysis will be performed via a surrogate-based 
approach in order to account for the non-linearity.  

Figure 3. Residuals in predicting the keff (
effk ) for a range of the gap conductivity and cross-

sections (hgap and ) for 30 samples (surrogate vs. VERA-CS). 
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Figure 4. Residuals in predicting the maximum fuel pin power (
maxP ) for a range of the gap 

conductivity and cross-sections (hgap and ) for 30 samples (surrogate vs. VERA-CS). 

 

Figure 5. Residuals in predicting the maximum fuel pin temperature (
maxT ) for a range of the gap 

conductivity and cross-sections (hgap and ) for 30 samples (surrogate vs. VERA-CS). 
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Table 4. Summary of the keff   uncertainty results – joint parameters (MCUQ vs. MP-EUQ vs. 
SBUQ) 

 

 

 

 

 

 

 

 

 

 

Depletion (irradiation) STD MP-EUQ 
r=60 

2nd Order Surrogate 
500 samples 

Monte Carlo 
50 samples 

0.0 EFPD 
 

k  0.389 % 0.425 % 0.401 % 

k  - 0.019 % 0.063  % 
9 EFPD 

 
k  0.399 % 0.395 % 0.417 % 

k
  - 0.021 % 0.066 % 

32 EFPD 
 k

  0.390 % 0.415 % 0.399 % 

k
  - 0.025 % 0.074 % 

45 EFPD 
 

k  0.380 % 0.420 % 0.398 % 

k
  - 0.019 % 0.052 % 

60 EFPD 
k  0.379 % 0.399 % 0.391 % 

k
  - 0.032 % 0.071 % 

80 EFPD 
k  0.357 % 0.398 % 0.392 % 

k
  - 0.023 % 0.065 % 

100 EFPD 
k  0.351 % 0.394 % 0.390 % 

k
  - 0.023 % 0.062 % 

120 EFPD 
k  0.349 % 0.391 % 0.387 % 

k
  - 0.023 % 0.058 % 

160 EFPD 
k  0.341 % 0.389 % 0.381 % 

k
  - 0.026 % 0.046 % 
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Table 5. Summary of the Maximum Fuel Pin Power uncertainty results – joint parameters 
(MCUQ vs. MP-EUQ vs. SBUQ). 

 

 

 

 

 

 

 

 

 

 

Depletion 
(irradiation) 

STD MP-EUQ 
r=60 

2nd Order Surrogate 
500 samples 

Monte Carlo 
50 samples 

0.0 EFPD mp  1% 1.3 %  1.1 % 

mp  - 0.02 %   0.19%   

9 EFPD mp  0.6 % 1.1 % 1.04 % 

mp  - 0.08  % 0.18 % 

32 EFPD mp  0.9 % 1.5 % 1.4  % 

mp  - 0.011  % 0.2  % 

45 EFPD mp  2% 2.2  % 2.9 % 

mp  - 0.2 % 1 % 

60 EFPD mp  2.11 % 1.77  % 1.14  % 

mp  - 0.14 % 0.58 % 
80 EFPD mp  2.45 % 1.64 % 1.00 % 

mp  - 0.20 % 0.55 % 
100 EFPD mp  3.75 % 1.79 % 1.50 % 

mp  - 0.1 % 0.50 % 
120 EFPD mp  2.50 % 1.62 % 1.29 % 

mp  - 0.11 % 0.33 % 
160 EFPD mp  1.72 % 1.45 % 1.41 % 

mp  - 0.07 % 0.16 % 
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Table 6. Summary of the Maximum Fuel Pin Temperature uncertainty results – joint parameters 
(MCUQ vs. MP-EUQ vs. SBUQ). 

 

 

 

 

 

 

 

 

Depletion 
(irradiation) 

STD MP-EUQ 
r=60 

2nd Order Surrogate 
500 samples 

Monte Carlo 
50 samples 

0.0 EFPD 
mt  0.05 % 7.23 % 6.53% 

mt  - 0.07% 1.00% 
9 EFPD 

mt  1.92% 5.10% 6.91% 

mt  - 0.02% 0.40% 
32 EFPD 

mt  1.82% 4.73% 4.53% 

mt  - 0.03% 0.33% 
45 EFPD 

mt  2.02% 5.15% 5.02% 

mt  - 0.03% 0.31% 
60 EFPD 

mt  2.35% 5.59% 5.58% 

mt  - 0.08% 0.41% 
80 EFPD 

mt  2.44% 5.56% 5.44% 

mt  - 0.04% 0.39% 
100 EFPD 

mt  3.00% 5.11% 5.00% 

mt  - 0.09% 0.43% 
120 EFPD 

mt  2.11% 5.46% 5.22% 

mt  - 0.06% 0.38% 
160 EFPD 

mt  2.33% 5.87% 5.67% 

mt  - 0.07% 0.31% 
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3. Data Assimilation for CASL Progression Problem Number 9 
In this case study the cross-sections and two thermal-hydraulic parameters are calibrated 

using the SBDA methodology. The core simulator of interest is VERA-CS which is used to 
model Progression Problem Number 6, denoting a three dimensional fuel assembly, and 
Progression Problem Number 9, denoting a full core, 3D representation of WB1C1. Progression 
Problem Number 6 was completed for the purpose of developing, implementing in software, and 
verifying the SBDA methodology; in this report Progression Problem Number 6 will not be 
reported upon and the reader is referred to Ref. [1,8]. Figure 1 presents the constituent models of 
VERA-CS. Referring to the figure; the thermal-hydraulic parameters of interest - in this case 
study – are the gap conductivity ( gaph ) and the grid spacer loss coefficient ( lossg ). The nuclear 
data parameters of interest are the cross-sections, specifically the fission, absorption and 
scattering cross-sections for 18 isotope-reaction pairs. The number of energy groups in the 
VERA-CS cross-sections library is 47 (refer to Table 7); resulting in 846=1847 cross-section 
parameters and two thermal-hydraulics parameters to be calibrated. The DRAM – QUESO 
algorithm (encoded in DAKOTA 6.2 [11]) will be employed to solve the inverse problem 
associated with data assimilation using 100,000 samples per Markov chain. In the case of nuclear 
data cross-sections, a Gaussian prior distribution based on the covariance library (44groupcov) 
[10] is used while uniform distributions are used for the thermal hydraulics parameters (hgap 
(±50%), gloss (±4%)). 

First, the goal-oriented surrogate is constructed in the form represented by Eq. (1). The 
surrogate is constructed as described in Section 1 and evaluated via examining the norm of 
residuals and their distribution. In this case study, the measured responses of interest are the 
multiplication factor ( effk ), and the three dimensional distribution for the relative fission reaction 
rate ( FR ) within the instrument thimble located in each of the 56 fuel assemblies in the quarter 
core and assumed measured at 49 axial positions. Such measurements are consistent with core 
instrumentation using the moveable in-core detector system and when quarter core symmetry 
applies as is the case for WB1C1. 

The surrogates will be constructed similarly as done for the uncertainty quantification 
analysis with the difference that the perturbations are generated randomly within the intervals of 
interest for data assimilation (hgap (±50%), gloss (±4%) , and cross-sections (±5%)). Refer to 
Table 8 for details about the surrogate error analysis. Note that the RMS for the FR reflects the 
RMS of a vector formed from the 4956 matrix mentioned earlier; that is:  

  RMS vec FR FR , 

where vec is an operator that stacks the columns of a matrix into a vector. Due to computational 
resource limitations, 2nd order polynomial surrogates are used; hence the surrogate form-related 
uncertainty is higher than that of a 3rd order surrogate (which was used for data assimilation of 
Progression Problem Number 6 as reported upon in Ref. [8]). The effect of a higher surrogate 
form-related uncertainty is a larger error in calibrating the parameters of interest along with 
higher uncertainty. Therefore, in this section the data assimilation problem will be solved twice; 
once with including the surrogate form-related uncertainty and then without including the 
surrogate form-related uncertainty. Comparing the results of the two cases will indicate the effect 
of the surrogate errors on the calibration study. Figure 6 presents the keff surrogate residual errors 
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along with their distribution. Figure 7 shows the surrogate residual error distribution for the 
fission rate in the core’s center fuel assembly. For the surrogate models to be useful, the residual 
errors should be an order of magnitude smaller than the experimental uncertainties.  

 

 

Figure 6. Residual errors along with their distribution - keff 

 

 

Figure 7. Residual errors along with their distribution – Fission rate in the core’s center fuel 
assembly. 

 

Samples
0 10 20 30 40 50

-40

-20

0

20

40

60

80

Prediction Error - k eff [pcm]
-50 0 50 100
0

5

10

15

20

25

30

CASL-U-2016-1054-000



18 
 

Synthetic data was used instead of real WB1C1 data for the responses of interest [i.e. 
experimental data to be used in the data assimilation]. Using the synthetic data implies that the 
actual solution of the data assimilation problem is known a priori, enabling the data assimilation 
method to be verified. Six depletion steps are used to generate the synthetic responses of interest. 
Hence, each response is measured at each of the depletion steps (0, 9, 32, 45, 120, 160 EFPD). 
Table 9 summarizes the measurements and their uncertainties. The synthetic measurements are 
generated via the high fidelity simulator (VERA-CS) where specific known parameter 
perturbations are used. Magnitudes of uncertainties associated to each of these measurements are 
based on the uncertainties that would be experienced in actual experimental measurements. The 
surrogates are then used for simultaneous calibration of the thermal-hydraulics parameters along 
with the cross-sections of interest. Therefore, as noted above the ideal solution to the data 
assimilation problem is known a priori and the performance of the SBDA can be evaluated by 
comparing the known perturbations and the mean variations generated by DRAM in conjunction 
with the surrogate (SBDA).  

Figure 8 and Figure 9 shows the Monte Carlo Markov chains and their distributions 
generated by DRAM for the thermal-hydraulics parameters (grid spacer loss coefficient and gap 
conductivity). Figure 10 indicates that there is no correlation between the gap conductivity ( gaph ) 
and the grid spacer loss coefficient ( lossg ). It was noted that the multiplication factor is not 
sensitive to the grid spacer loss coefficient. Moreover, it was found that the effect of the grid 
spacer loss coefficient is the weakest among all other parameters regarding the fission rate 
responses at the fuel assemblies’ instrument thimble location. Therefore, the variations in the 
grid spacer loss coefficient are not constrained further by using the current responses of interest. 

 

 

Figure 8. Chain and posterior distribution of the grid spacer loss coefficient ( lossg ). [Including

surrogate fC ]. 
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Figure 9. Chain and posterior distribution of the gap conductivity ( gaph ). [Including surrogate fC ]. 

 

 

Figure 10. Correlation between the gap conductivity ( gaph ) and the grid spacer loss coefficient (

lossg ). [Including surrogate fC ]. 
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Table 7. The 47 group structure. 

g Energy 

Boundary 

g Energy 

Boundary 

G Energy 

Boundary 

G Energy 

Boundary 

1 20 MeV 13 78.9 eV 25 2.3824 eV 37 0.5032 eV 

2 6.0653 MeV 14 47.8512 eV 26 1.8554 eV 38 0.35767 eV 

3 3.6788 MeV 15 29.023 eV 27 1.4574 eV 39 0.2705 eV 

4 2.2313 MeV 16 13.71 eV 28 1.2351 eV 40 0.18443 eV 

5 1.3534 MeV 17 12.099 eV 29 1.1664 eV 41 0.14572 eV 

6 0.8208 MeV 18 8.3153 eV 30 1.1254 eV 42 0.11157 eV 

7 4.9787 MeV 19 7.33822 eV 31 1.0722 eV 43 0.08197 eV 

8 0.1832 MeV 20 6.47602 eV 32 1.0137 eV 44 0.0569 eV 

9 67.38 KeV 21 5.715 eV 33 0.97100 eV 45 0.0428 eV 

10 9.119 KeV 22 5.04348 eV 34 0.9099 eV 46 0.0306 eV 

11 2.0347 KeV 23 4.4509 eV 35 0.7821 eV 47 0.0124 eV 

12 0.13 KeV 24 3.9279 eV 36 0.62506 eV - - 

 

Table 8. Surrogate features. 

Surrogate 
Order 

RMS Construction 
Data Points 

Validation 
Points 

Residuals 
Distribution 

Surrogate Form – 
Related Uncertainty 

(Appendix A.2)* 

2nd order 
effk  14.4 

[pcm] 

120 30  

effk  i.i.d 

35.0 [pcm] 

FR 0.0332 FR i.i.d 0.93% [Maximum] 

*The numbers here represent the uncertainty in the surrogate response due to the uncertainty in the surrogate 
coefficients estimated by Eq. (5) which are then used in a Monte Carlo process to estimate the surrogate-form 
related uncertainty.  
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Table 9. Measurements and their uncertainties. 

Measurement 
0.0 

EFPD 

9.0 

EFPD 

32.0 

EFPD 

120.0 

EFPD 

160.0 

EFPD 

effk  
1.000443 

±0.00060 

1.000121 

±0.00060 

1.00013 

±0.00060 

0.999951 

±0.00060 

0.99991 

±0.00060 

FR  

(in core’s central 
fuel assembly 

center) 

1.9321 

±0.02 

1.8962 

±0.02 

1.8212 

±0.02 

1.7612 

±0.02 

1.7312 

±0.02 

 

In order to evaluate the performance of the SBDA, the actual perturbations (which are 
known) are compared with the perturbations determined by the SBDA. A consolidated metric is 
defined to evaluate the performance of the SBDA with calibrating the cross-section parameters. 
Table 10 reports the energy group averaged difference ( ,

DA
x i ) along with the maximum difference 

across all energy groups between the actual perturbation and the one estimated by the SBDA. 
The maximum average error difference is 6.1% occurring for the Pu-239 fission cross-sections 
(when the surrogate form uncertainty is included (i.e. surrogate fC ). In the case of ignoring the 
surrogate form–related uncertainty, the maximum average difference is 5.8% occurring for the 
Pu-239 fission cross-sections. Table 10 summarizes the data assimilation results for a few 
important parameters including the two thermal-hydraulics parameters. Table 10 and Table 11 
indicate that the surrogate model-form error is sufficiently small to not influence the data 
assimilation results. 
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Table 10. Assimilation performance measure for the various cross-sections parameters being calibrated. 

Parameter 
       

Energy Group Average 
, , ,
,g ,g ,g

1 1

G G
i syn i DA i syn
x x x

g g 

     

Maximum Estimation Difference  
, , ,
,g ,g ,g

i syn i DA i syn
x x x    

With 

surrogate fC  

Without 

surrogate fC  

With
surrogate fC  

Without 
surrogate fC  

, -235
DA
f U  2.1% 2.0% 2.9% [g=2] 2.3% [g=8] 

, -238
DA
f U  1.9% 1.7% 3.9% [g=6] 3.3% [g=6] 

, 239
DA
f Pu -  6.1 % 5.8% 5.1% [g=41] 6.2% [g=34] 

, -16
DA
s O  5.9% 5.2% 12.1%[g=11] 3.1%[g=8] 

, -1
DA
s H  1.9% 1.8% 6.1%[g=37] 4.0% [g=40] 

, 240
DA
f Pu -  4.1% 4.0% 4.2%[g=25] 3.5% [g=18] 

, 134
DA
a Xe -  2.6% 2.5% 4.5%[g=26] 2.5% [g=26] 

, 10
DA
a B -  1.5% 1.3% 4.0% [g=10] 2.6% [g=12] 

, 130
DA
a Xe -  1.1% 0.92% 5.2%[g=8] 3.8%[g=10] 

, 90
DA
a Y -  3.0% 2.9% 4.2%[g=12] 2.9%[g=10] 

, 91
DA
a Y -  3.3% 3.0% 6.0%[g=15] 4.8%[g=16] 

, 90
DA
a Zr -  3.3% 3.0% 3.9%[g=3] 4.5%[g=4] 

, 56
DA
s Fe -  2.7% 1.3% 4.8%[g=41] 2.6%[g=40] 

, 55
DA
s Mn -  2.5% 1.4% 4.9%[g=30] 3.8%[g=29] 

, 241
DA
f Pu -  4.8% 2.8% 7.4%[g=41] 5.2%[g=43] 

, 236
DA
f U -  1.9% 3.3% 4.8%[g=13] 2.6%[g=15] 
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Table 11. Data assimilation results for a few important parameters. 

 
4. Posterior Uncertainty Quantification 
 In this section, the importance of the data assimilation study is highlighted and its effect on 
uncertainty quantification is assessed. The uncertainty study performed in Section 2 is repeated 
using the updated uncertainties obtained from the data assimilation presented in Section 3 (after 
burning the first 30,000 samples in the chain and sing the remaining 70,000 samples). In order to 
obtain the uncertainties efficiently, surrogates will be used to perform the Monte Carlo 
Uncertainty Quantification (MCUQ), so surrogate form-related uncertainty will be accounted for. 

 Table 12 through Table 14 compare the uncertainties in the quantities of interest prior and 
posterior to the data assimilation study.  The only difference between the uncertainty study 
presented here and the one presented in Section 2 is the uncertainty distributions. In all cases the 
posterior uncertainties for the quantities of interest are reduced from their prior values. Note that 
the uncertainties ( R ) are generally reduced along with the uncertainty in those uncertainties (

R ) up to 75% for maximum fuel pin power, 82% for maximum fuel pin temperature and 55% 

Parameter Reference Value Actual 
Perturbed 

Value 

SBDA Estimated 
Perturbation  

With surrogate fC  

SBDA Estimated 
Perturbation 

Without surrogate fC  

gaph  4500 ± 2250 4359.91 4109.2 ± 504.1  4008.3 ± 419.2  

lossg  0.907 ± 0.03628 0.9123 0.9088 ± 0.035 0.9088 ± 0.035 

235U
f
   

[g=47] 

1125.219 ±2.66 1258.435 1267.01 ± 1.11 1281.45 ± 1.01 

238U
f
   

[g=27] 

0.8927011±0.00528 

 

0.93246 

 

0.9270 ± 0.00243 

 

0.9213 ± 0.00181 

 

239Pu
f

  

[g=47] 

1361.297± 16.03 

 

1441.313  

 

1436.2 ± 6.11 

 

1443.92 ± 5.14 

 

1H
s
  

[g=47] 

75.346183±0.07494 

 

82.47610 

 

78.72 ± 0.0382 

 

80.21 ± 0.0291 

 

16O
s
   

[g=47] 

4.329821±0.04336 

 

4.629821  

 

4.611 ± 0.0211 

 

4.601 ± 0.01800 
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for the multiplication factor (keff). This is due to the fact that the updated uncertainty intervals are 
reduced and this affects the uncertainty in the quantity of interest and the fluctuation in that 
uncertainty.  

 Despite the great benefits of data assimilation noted above, its computational cost is really 
huge unless the original model (i.e. VERA-CS) is replaced with a lower fidelity one (the 
surrogate model). Therefore, the premise of this work is to replace the original high fidelity and 
expensive model with a surrogate model that we can run with negligible computational cost. In 
the current milestone report this hypothesis has been tested in section 3 by placing known 
perturbations on the original model’s parameters and trying to retrieve them with the surrogate 
approach.  

 

Table 12. keff: joint 

Depletion Standard 
Deviation 

2nd order 
Surrogate – 

Monte Carlo - 
Original 

2nd order 
Surrogate 

Monte Carlo 
– Updated 

0 EFPD 
k  0.425 % 0.210 % 

k
  0.019 % 0.012 % 

9 EFPD 
k  0.395 % 0.189 % 

k
  0.021 % 0.011 % 

32 EFPD 
k  0.415 % 0.188 % 

k
  0.025 % 0.014 % 

45 EFPD 
k  0.420 % 0.192 % 

k
  0.019 % 0.009 % 

60 EFPD 
k  0.399 % 0.193 % 

k
  0.032 % 0.008 % 

80 EFPD 
k  0.398 % 0.199 % 

k
  0.023 % 0.011 % 

100 EFPD 
k  0.394 % 0.200 % 

k
  0.023 % 0.018 % 

120 EFPD 
k  0.391 % 0.201 % 

k
  0.023 % 0.017 % 

160 EFPD 
k  0.389 % 0.205 % 

k
  0.026 % 0.015 % 
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Table 13. Maximum Fuel Pin Power: joint 

Depletion Standard 
Deviation  

2nd order 
Surrogate – 
Monte Carlo -  
Original 

2nd order 
Surrogate 
Monte Carlo 
– Updated 

0 EFPD mp  1.3 %  0.3 %  

mp  0.02 %   0.011 %   

9 EFPD mp  1.1 % 0.32 % 

mp  0.08  % 0.025  % 

32 EFPD mp  1.5 % 0.31 % 

mp  0.011  % 0.008  % 

45 EFPD mp  2.2  % 0.4  % 

mp  0.2 % 0.1 % 

60 EFPD mp  1.77  % 0.43  % 

mp  0.14 % 0.05 % 
80 EFPD mp  1.64 % 0.47 % 

mp  0.20 % 0.09 % 
100 EFPD mp  1.79 % 0.45 % 

mp  0.1 % 0.07 % 
120 EFPD mp  1.62 % 0.42 % 

mp  0.11 % 0.064 % 
160 EFPD mp  1.45 % 0.37 % 

mp  0.07 % 0.043 % 
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Table 14. Maximum Fuel Pin Temperature: joint 

Depletion Standard 
Deviation 

2nd order 
Surrogate – 

Monte Carlo - 
Original 

2nd order 
Surrogate 

Monte Carlo 
– Updated 

0 EFPD 
mt  7.23 % 1.9 % 

mt  0.07% 0.06% 
9 EFPD 

mt  5.10% 2.0% 

mt  0.02% 0.04% 
32 EFPD 

mt  4.73% 1.9% 

mt  0.03% 0.01% 
45 EFPD 

mt  5.15% 1.8% 

mt  0.03% 0.02% 
60 EFPD 

mt  5.59% 1.7% 

mt  0.08% 0.05% 
80 EFPD 

mt  5.56% 1.78% 

mt  0.04% 0.02% 
100 EFPD 

mt  5.11% 1.8% 

mt  0.09% 0.02% 
120 EFPD 

mt  5.46% 1.9% 

mt  0.06% 0.01% 
160 EFPD 

mt  5.87% 2.0% 

mt  0.07% 0.02% 
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5. Summary and Conclusion 

In this milestone report an uncertainty quantification and data assimilation study performed 
for CASL Progression Problem Number 9 is reported upon. In a previous milestone report, 
efficient uncertainty quantification algorithms were proposed and tested with CASL Progression 
Problem Number 6. The same methods were applied here to CASL Progression Problem Number 
9. Further, an efficient surrogate based data assimilation methodology was proposed, 
implemented and tested using CASL Progression Problem Numbers 6 (reported upon in Ref. [8]) 
and 9 (reported upon here). Finally, the data assimilation results were used to re-quantify the 
uncertainty for CASL Progression Problem Number 9 and the effect of calibrating the 
parameters along with uncertainties in the quantities of interest uncertainties was highlighted. 
The computer allocation used in completing the work reported upon here was 2.5 million core 
hours provided by the Texas Advanced Computing Center (TACC). In addition, North Carolina 
State University – High Performance Computers (NCSU-HPC) were used as a supplementary 
resource. 

Based on the study presented here, data assimilation can be performed using a high fidelity 
core simulation in reactor core problems with demanding but achievable computational cost. 
Once the surrogate is constructed the computational cost of the remaining analysis is negligible. 
The computational cost of constructing the surrogate model was reduced via the usage of 
efficient reduced order modeling algorithms developed and presented in a previous milestone 
report [1]. Once the model parameters are calibrated, new uncertainty intervals can be used to re-
quantify the uncertainties in the quantities of interest. Uncertainties in the quantities of interest 
were determined to drop significantly (up to 75% for maximum fuel pin power, 82% for 
maximum fuel pin temperature and 55% for the multiplication factor).  The effect of the data 
assimilation on re-quantified uncertainties is encouraging for further investigation and 
implementation of data assimilation methods and algorithms. 

 Future work will be focused on using real plant data to calibrate VERA-CS models. 
Moreover, different types of surrogates might be employed and used in the data assimilation 
study. Expectations are that once real plant data are used, model parameters can be realistically 
calibrated and therefore quantities of interest can be predicted with reduced uncertainties.  

 Overall, the reduced order modeling approaches presented in this report and the previous one 
[1] aim to introduce efficient capabilities for data assimilation and uncertainty quantification for 
VERA. Moreover, the surrogates can be seen as a reduced fidelity level available within VERA 
for other intended usage whenever needed.  

Acknowledgment  
 The authors would like to express their thanks and gratitude towards those who contributed 
significantly in reviewing this report: Dr. Brian Williams (Los Alamos National Laboratory), Dr. Jess C. 
Gehin (Oak Ridge National Laboratory), Dr. Vincent A. Mousseau (Sandia National Laboratory), and Mr. 
[soon to be Dr.] Douglas Burns (Idaho National Laboratory). 

 Moreover, the authors would like to thank Texas Advanced Computing Center (TACC) and North 
Carolina State High Performance Computing (NCSU-HPC) for providing the required computer 
allocation. 

CASL-U-2016-1054-000



28 
 

References 
 

1. Khuwaileh, B. A., Hooper, R., Turinsky, P. J., and Mousseau, V. A. (2015). Uncertainty 
Quantification Analysis Using VERA-CS for a PWR Fuel Assembly with Depletion. CASL-I-
2015-0328-000. 
2. Proctor, W. C. (2012). Elements of high-order predictive model calibration algorithms with 
applications to large-scale reactor physics systems. PhD Dissertation, North Carolina State 
University. 
3. Hite, J. M., Abdel-Khalik, H. S., Smith, R. C., Wentworth, M., Prudencio, E., and Williams, 
B. (2013). Uncertainty Quantification and Data Assimilation (UQ/DA) Study on a VERA Core 
Simulator Component for CRUD Analysis CASL-I-2013-0184-000.  
4. Haario, H., Laine, M., Mira, A., and Saksman, E. (2006). DRAM: efficient adaptive MCMC. 
Statistics and Computing, 16(4), 339-354. 
5. Khuwaileh, Bassam A., Wang C., Bang Yangsuk and Abdel-Khalik, Hany S. (2014). 
Efficient Subspace Construction for Reduced Order Modeling In Reactor Analysis. PHYSOR 
2014-The Role of Reactor Physics Toward a Sustainable Future. 
6. Khuwaileh, Bassam A., Hite J. and Abdel-Khalik, Hany S. (2014). Subspace Methods For 
Multi-Physics Reduced Order Modeling In Nuclear Engineering Applications. PHYSOR 2014-
The Role of Reactor Physics Toward a Sustainable Future.  
7. Bang, Y. (2012). Hybrid Reduced Order Modeling Algorithms for Reactor Physics 
Calculations. 
8. Khuwaileh, B. A. A. (2015). Scalable methods for uncertainty quantification, data 
assimilation and target accuracy assessment for multi-physics advanced simulation of light water 
reactors. PhD Dissertation, North Carolina State University. 
9. Halko, N., Martinsson, P., & Tropp, J. A. (2011). Finding structure with randomness: 
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 
53(2), 217-288. 
10. Scale (2011): A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis 
and Design, ORNL/ TM-2005/39, Version 6.1, Oak Ridge National Laboratory, Oak Ridge, 
Tennessee. Available from Scale: A Comprehensive Modeling and Simulation Suite for Nuclear 
Safety Analysis. 
11. Godfrey, A., VERA Core Physics Benchmark Progression Problem Specifications, Revision 
4, CASL Technical Report: CASL-U-2012–0131–004, August 29, 2014. 
12. Adams, B.M., Ebeida, M.S. ,  Michael S. Eldred, M . S . ,  Jakeman, J.D., Swiler, L.P., Stephens, J.A., 
Vigil, D.M., Wildey, T.M., Bohnhoff, W.J., Dalbey, K.R., Eddy, J.P., Hu, K.T., Bauman, L.E., Hough, 
P.D. (2014). DAKOTA, a multilevel parallel object-oriented framework for design optimization, 
parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.1 user’s 
manual. Sandia National Laboratories, Tech. Rep. SAND2014-4633.  
13. Smith, R. C. (2013). Uncertainty Quantification: Theory, Implementation, and Applications 
(Vol. 12). SIAM 

 
 
 
 
 

CASL-U-2016-1054-000



29 

Appendix A 

A.1: The Error Upper Bound 

The following equation can determine the error upper bound upper  when approximating the 

physical quantity  using the basis spanned by the columns of matrix U : 

 1,... 2

210 max T
upper j p j 

   I UU (4) 

This upper bound is guaranteed with a success probability of 1-10-p where p denotes the number 
of additional values of physical quantity   beyond those used to construct the subspace and 
obtained as perturbed solutions to the governing equations when parameters are randomly 
perturbed [9]. For more information about the theory behind this error upper bound estimation 
and its application please refer to Ref. [8, 9].  

A.2: Surrogate Form Related Uncertainty 

The surrogate parameters are statistical parameters that are subjected to variance and standard 
deviation which can be approximated by Eq.(5) assuming unbiased residual error and an 
independent-identically distributed random error (i.i.d) [1, 8, 13]:   

      12 TV q q q  


     , (5) 

where, 

  
surryq

q
 




 and 2 1 TR R
n p

 


 , 

q is the parameters set, surry is the surrogate response and R is the residual obtained by 
comparing the responses obtained by the surrogate and the responses generated by VERA-CS 
(the original model).  On the other hand,  q is the sensitivity matrix (if the surrogate generates 

multiple responses) or a vector (for single response case) that can be calculated analytically or 
efficiently using a finite difference method. Finally, n-p is the number of degrees of freedom. For 
more details on this please refer to Ref. [1, 8, 13]. Once the variance  V q  is determined, the 

uncertainty in quantities of interest due to the surrogate’s coefficients can be estimated via a 
Monte Carlo approach. 
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