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Crud Risk Analysis

» Since the occurrences of severe CIPS in the 1980’s/1990'’s the
industry has developed tools to predict the risk of CIPS occurring for a
given reload design and core loading pattern (Westinghouse BOB
code which became the EPRI BOA code)

 If CIPS risk appears excessive, then steps can be taken to reduce the
risk of thick crud deposits and boron deposition in the crud that can
lead to CIPS or CILC

* High risk may require altering the proposed core loading pattern to
decrease risk
— Add more fuel assemblies
- Reduce peak assembly powers, increase neutron leakage
— Initiate Ultrasonic Fuel Cleaning to remove crud from fuel

» All of these approaches can increase the operating costs of operations
for nuclear plants

* Improved, more accurate methods, such as those being developed by
CASL to simulate crud deposition and it’s effects, can help to avoid the
cost increases that are implemented to reduce the risk of crud
deposition (CIPS/CILC)
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CASL multi-physics tools for crud modeling
to assess/mitigate risk for CIPS/CILC




MAMBA crud modeling development
framework within CASL
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MAMBA is a high-resolution 3D crud simulation code

1-400cm

50 — 150 microns

----------------

Little or no form
downstream of grids due to
good mixing § turbulent flow

Ll e A

Industrial relevant issues:

1) Crud Induced Power
Shift (CIPS)

2) Crud Induced Localized
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Modeling CRUD is a coupled multi-scale and
multi-physics problem

MAMBA 2D Crud Profile View normalized boron
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Fundamental DFT-Based Free Energies and Thermodynamic
Correlations Have Been Incorporated into MAMBA
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Solubility correlations also
developed for Li,B,0, and
Ni,FeBO (bonaccordite)

Thermodynamic correlations + MAMBA
transport / boiling models determine
precipitation threshold and boron uptake
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The physics and chemistry of CRUD:

MAMBA flow diagram

Heat Transfer
4=

3D non-linear, iterative solver
local “sinks” (boiling chimneys)

External Inputs

Cladding heat flux
Coolant T or HTC
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Chemistry + Transport

Thermodynamics, surface deposition/erosion
internal deposition/precipitation, B1° depletion
microstructure (porosity)
convective and diffusive transport

-

External Inputs
Coolant Ni,Fe,H,
Li, B Conc.
Local shear stress or TKE
B10 destruction rate

¥

~Filel/O Adaptive Grid (surface growth)
write results, coupling '- Surface volume element “full”?
output and check point Activate/initialize new surface element
files to disk
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MAMBA Development, Applications, and Validation (Highlights)

= 2D MAMBA v1.0 source code released to CASL (12/ 7/11)
= 3D MAMBA v2.0 source code released to CASL (2/28/12)
= 1D MAMBA v3.0 source code released to CASL (2/2/15)

= Coupled MAMBA / STAR-CCM* / DeCART initial //
demonstration simulation for a 3D single pin cell '
geometry (CASL DOE reportable L1, 2012, Annals of Nuclear Energy 85, 1152 (2015)).

= |nitial Validation and Benchmark Study of 3D MAMBA
v2.0 against the Walt Loop Experiment and BOA v3.0
Lead to improved boiling models in industry’s
BOA v3.1 code (CASL milestone report 2012).

= Coupled MAMBA/STAR-CCM*/DeCART
simulations for 4x4 subassembly
(CASL milestone report 2013).

= Coupled MAMBA/STAR-CCM*/ANC
simulations for 5x5 subassembly for ._
Seabrook Unit 1 cycle 5 (CASL L2 report 2014, & 5
Nuclear Engineering & Design 299, 95 (2016)). o T

= Coupled MAMBA/MPACT/CTF quarter core CIPS simulation

Watts Bar Unit 1 cycle 7 (CASL DOE reportable 1.1, 2015). ___ . ___ 4
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MAMBA has been applied to operating PWR
coupled with STAR-CCM+

Seabrook Unit 1 Cycle 5

CRUD (red)

= 5-rod by 5-rod array for which qualitative and
guantitative plant data is available was selected for
analysis

= First high-fidelity, two-way coupled CFD/CRUD
simulation of an industrial relevant plant cycle

STAR-CCM+
5x5 spacer grid

= |nput power provided by industry simulations (ANC)
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= Showed that both axial and azimuthal thermal hydrauli
effects dramatically affect CRUD deposition patterns

= Axial and azimuthal CRUD deposition patterns were
consistent with plant data
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MAMBA Computed CRUD distributions

for Seabrook 5x5 subassembly
 Pin#7 Pin #8 ) Pln#9 - CRUD (red) 3D Top view
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Subgrid (1D) version of MAMBA was developed to
enable full core crud simulations (CIPS)

Uses parameterized models to avoid expensive Radial (1D)
computational steps (reduces cpu & memory) transport
— Heat transfer dominates

— Thermodynamics
Avoids additional mesh mapping requirements

Crud is simulated at the same resolution as the thermal
hydraulics code (sub-channel or CFD)

Isolates critical parameters for boron uptake

— Precipitation threshold — when CIPS appears in cycle

— Max. boron layer thickness — magnitude of CIPS

Crud growth & transport models are same as in MAMBA 3D

Parameterized models verifed against MAMBA 3D coupled |
with STAR-CCM+ 7

Successful preliminary application to Watts Bar CIPS
CASL-U-2016-1084-000




Watts Bar Unit 1 Cycle 7 CIPS
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MPACT/CTF/MAMBA Simulations: Watts Bar
Unit 1 Cycle 7 CIPS
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Thermal hydraulic resolution affects crud
predictions
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Low resolution subchannel thermal
hydraulics code (CTF) does not
capture localized thermal and erosion
effects due to spacer grids — too much
crud & broad distribution (blue)

Note: BOA simulations include a
spacer grid erosion model.

High resolution CFD thermal hydraulics code
(STAR-CCM+) captures localized thermal
and erosion effects due to spacer grids —
less crud & localized distribution (green)
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Thermal hydraulic resolution affects boron

oredictions
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Capturing thermal hydraulic resolution

 Localized thermal hydraulic effects require high
resolution treatment

— Temperature
— Turbulent kinetic energy
* Include subgrid models for these effects in CTF

* Adjust MAMBA’s boron precipitation and crud
growth/erosion parameters to compensate

e Current on going efforts within CASL to benchmark
MAMBA/CTF against MAMBA/CFD to:
— Develop appropriate subgrid thermal hydraulic models for CTF
— Develop appropriate parameter sets for using MAMBA with CTF

e Current on going efforts within CASL to benchmark
MAMBA 1D vs 3D

CASL-U-2016-1084-000




Benchmarking MAMBA 1D against
MAMBA 3D using STAR-CCM+

No spacer grids and no erosion Preliminary analysis by
Single pin model one-way coupling only Dr. Dan Walter, U. Mich
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Benchmarking MAMBA 1D against MAMBA 3D using
STAR-CCM+ o |
Preliminary analysis by

With spacer grids and with erosion Dr. Dan Walter, U. Mich
Single pin model one-way coupling only
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Crud Related CASL Milestones for FY16

L1 CASL.P13.04 Jeff Secker “Qualify CFD-based PWR Crud Induced
Localized Corrosion (CILC) Capability”

— Couple MAMBA 1D with STAR-CCM+ and apply to Seabrook unit 1 cycle 5
— Verify against previous 5x5 MAMBA 3D /STAR-CCM+ simulation results

L2:FMC.P13.04 Brian Kendrick “MAMBA work supporting L1 CILC
Milestone” + several other milestones: theory manual, 1D vs 3D validation

L3 THM.CFD.P12.02 Annalisa Manera “Status STAR-CCM+/MAMBA
Coupling”
L2:VMA.P13.01 Jeff Secker “VERA-CS with MAMBA Model of Seabrook”

L3 VMA.AMA.P13.01 Andre Godfrey “Updated Watts Bar Cycle 7 CIPS
Analysis”

L2:VMA.P13.03 Jeff Sector/Vince Mousseau “Initial UQ Analysis for CIPS
and Define UQ approach for CILC”

L3:PHI.CMD.P13.02 Stuart Slattery “Support for CILC L1 milestone using
STAR-CCM+”

L3:PHI.CTF.P13.04 Aaron Wysocki “CTF support for CIPS challenge
problem”

L3:FMC.CRUD: Andersson, Brenner, Shin, Short, Was, several milestones
supporting thermodynamic & oxide model development for MAMBA.
CASL-U-2016-1084-000
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Summary and Future Plans

MAMBA is a high resolution crud simulation code

— Validated against WEC WALT Loop experiment, BOA code, and plant data
MAMBA has been coupled to both neutronics and thermal hydraulics
and successfully applied to operating PWRs

— Seabrook unit 1 cycle 5: MAMBA/STAR-CCM+ (CILC) computed high resolution
crud distrubition and validated against plant measured oxide thickness data

— Watt Bar unit 1 cycle 7: MAMBA/CTF/MPACT (CIPS) computed AO which
reproduced measured plant AO data

Localized thermal hydraulic effects have been identified which
greatly affect crud and boron predictions

Future work will develop subgrid models and parameter sets needed
to inform lower resolution codes CTF and MAMBA 1D

Future work will also extend thermodynamic models to include zinc

Additional validation studies against plant data needed to develop
and verify a fully predictive CIPS/CILC capability

CASL crud simulations tools will enable more reliable CIPS/CILC risk
assessment with cost savings to industry

CASL-U-2016-1084-000
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