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What is the Consortium for the Advanced 
Simulation of Light Water Reactors? 

CASL is the first U.S. DOE Energy Innovation Hub connecting 
fundamental research and technology development through an 
integrated partnership of government, academia, and industry.   
 
 Our primary objective is to provide leading-edge modeling and 

simulation (M&S) capability to improve light water reactor 
performance. 
 
 With a vision for safer and more productive commercial 

nuclear power production via comprehensive science-based 
predictive M&S technology.  
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What is a DOE Energy Innovation Hub? 
• Established by Former DOE Energy  

Secretary Steven Chu 
• Modeled after the scientific management 

characteristics of Manhattan Project and 
AT&T Bell Labs: 
– Addressing critical problems 
– Combines basic and applied research with 

engineering 
– Integrated team to take discovery to application 

• Four Hubs are in operation 
 

For more info:  http://http://energy.gov/science-
innovation/innovation/hubs 

“Multi-disciplinary, highly 
collaborative teams ideally 
working under one roof to solve 
priority technology challenges” 
                      – Steven Chu 
 

http://DOE
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CASL is a National Laboratory, Industry, 
University Partnership  
 

Core Physics, Inc. 

CASL Founding  
Partners 

CASL Contributing  
Partners 
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CASL Scope: Develop and apply a 
“Virtual Reactor” to assess reactor 
operation and safety 
• Deliver improved predictive simulation of Light 

Water Reactors  
– Focus on fuel, vessel, internals 
– First five year focus on PWRs, broadened to 

BWR and Light Water Small Modular Reactors 
• Execute work in six technical focus areas to: 

– Equip the Virtual Reactor with necessary physical 
models and multiphysics integrators 

– Build the Virtual Reactor with a comprehensive, 
usable, and extensible software system  

– Validate and assess the Virtual Reactor models 
with quantified uncertainties 

 Focus on Addressing Challenge Problems to 
Drive CASL Development 
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Our Challenge Problems are Focused on 
Key Industry Reactor Performance Areas  
 

CRUD 
Predict CRUD Thickness Boron Uptake and Impact on Core 

Power Distribution (CIPS) and Cladding Corrosion (CILC) 
Neutronics, Thermal-hydraulics/Fluid Flow, Chemistry 

Pellet-Clad Interaction 
Predict Core Wide PCI Margin and Missing  

Pellet Surface PCI 
Neutronics, Thermal-hydraulics, Fuel/Cladding Performance 

Departure from Nucleate Boiling 
Predict DNB Margin for Steam Line Break and RIA 

and Predict Mixing & DNB 
Neutronics, Thermal-hydraulics/Fluid Flow 

Grid-to-Rod Fretting 
Predict Fluid-Structure Excitation Forces, Grid Gap, and 

Cladding Wear 
Fluid flow, Fuel/Clad Performance, Materials Performance 

Cladding Integrity  
Reactivity Insertion Accident 
Predict Pellet-Clad Mechanical Interaction 
 Reactor kinetics, Transient fuel/cladding 

Performance 

Cladding Integrity  
Loss of Coolant Accident 

Predict Peak Clad Temperature and Oxidation 
Margin given Thermal-Hydraulic Conditions 

Fuel/cladding performance 

Core 
Operation Environment 

 
Conditions for fuel rod depletion 

over operating cycle 
Neutronics, Thermal-Hydraulics, 

Fuel Performance 
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CASL Researchers Presenting Today 

• Brian Kendrick - Fuels, Materials and Chemistry Focus Area 
– Multi-scale aspects of modeling CRUD including chemistry physics of 

CRUD deposition on to fuel rod surfaces 

• Kevin Clarno – Physics Integration Focus Area 
– Multi-physics aspects of CRUD Challenge problem including integration of 

neutronics, thermal-hydraulics and CRUD chemistry 

• Jeff Secker – CRUD Challenge Problem Integrator 
– Significance of the CRUD Challenge problem for industry and recent 

CASL simulation results 
 



Overview of the CASL 
Crud Challenge Problem 

Jeff Secker 
Westinghouse Electric Company 
October 21, 2015 
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What is crud?  
• Corrosion product materials from reactor 

coolant system surfaces that deposit on the 
fuel cladding are referred to as crud 
deposits 
– System materials are highly corrosion resistant – 

stainless steel and nickel based alloys 
– However, some corrosion does occur, and the 

resulting iron and nickel ions and oxides circulate in 
the reactor coolant system 

– The circulating corrosion products can then deposit 
on the reactor core  

– Crud deposition is strongly enhanced if the core is 
undergoing sub-cooled boiling 
• Steam bubbles on fuel cladding surface that then 

condense once they move in to the bulk coolant 
• Bulk coolant remains below saturation 

temperature, but fuel cladding surface 
temperature exceeds saturation in local hot spots 

CRUD deposits 
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What is Crud Induced Power Shift (CIPS)?
  
• CIPS is an unexpected shift in 

axial power distribution toward 
the core inlet 

• CIPS is caused by crud 
deposition in the upper spans of 
the fuel cladding surfaces of the 
reactor core in the presence of 
sub-cooled nucleate boiling 
– Sub-cooled boiling draws liquid 

containing iron and nickel corrosion 
products to the cladding surface, 
which is then deposited on the 
cladding since the steam does not 
contain iron or nickel 



11 

What is Crud Induced Power Shift (CIPS)?
  
• The sub-cooled boiling process in the porous crud deposits lead to 

concentration of boric acid (used for PWR reactivity control) and lithium 
hydroxide (to maintain a neutral pH in the presence of boric acid) in the 
crud layer 
– Liquid containing B and Li is drawn into the crud by the sub-cooled 

boiling process, but the steam exits the crud without appreciable B or Li 
– If B and Li concentrate sufficiently within the crud deposit, a lithium 

boron compound (believed to be Li2B4O7) will precipitate in the crud  
• When boron is deposited in the upper spans of the core in the crud 

deposits, the flux distribution shifts toward the lower portions of the core 
that do not contain the neutron absorbing boron 
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Effects of crud and boron deposition 

• Unexpected shift in flux distribution leading to 
unpredictable core power distribution 

• Core reactivity is altered 
– Can be transient effect as reactor power level is changed since 

Li2B4O7 has retrograde solubility – more soluble at low temperatures 
when power is reduced, so it dissolves out of the crud 

• Can cause loss of shutdown margin 
– Deposited boron present at 100% power, dissolves at 0% power 

• Thick crud deposits have also led to fuel cladding 
failures (Crud Induced Localized Corrosion – CILC) as 
heat transfer is impeded 

In extreme cases, CIPS required a PWR to 
operate at reduced power for many months 
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Multi-Physics Needs for CIPS modeling 

• A robust neutronics code is needed to accurately predict 
the core power (heat flux) distribution 

• The neutronics model also needs to model the effect on 
the neutron flux and core reactivity as crud and boron 
are deposited 

• A thermal-hydraulics model is needed to model the local 
thermal conditions in the core including the sub-cooled 
boiling distribution 

• A crud deposition model is needed to grow the deposits 
during plant operation 

• A crud chemistry model is needed to predict the 
concentration of B and Li in the crud and the 
precipitation of Li2B4O7 



CRUD Modeling:  
MAMBA (FMC Advanced Model 
for Boron Analysis) 
development and applications 

ANS Webinar 
October 21, 2015 
 
Brian Kendrick 
Los Alamos National Laboratory 
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FMC (Fuels, Materials, & Chemistry) focus area: 
Delivers Engineering Scale Fuel Performance 
Models and Materials Physics-based Constitutive  
Models for CASL Challenge Problems 

Microscale activities underway to provide mechanistic/physical insight into complex degradation 
phenomena 

PCI 
(Pellet Clad Interaction) 

Peregrine 
(Fuel Performance) 

MAMBA  
(FMC Advanced Model 

for Boron Analysis) 

GTRF 
(Grid To Rod Fretting)  

Structural Mechanics & 
WEAR MODELS 

CRUD 
(Chalk River Unidentified Deposit) 
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CRUD 

Industrial relevant issues: 
 

1) Crud Induced Power  
      Shift (CIPS) 
2)   Crud Induced Localized  
      Corrosion (CILC) 
 

MAMBA’s 3D Computational Grid Covers 
the Entire Surface of the Fuel Rods 

80 microns 

CRUD 
(Chalk River  
Unidentified Deposit) 
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Colored contours: 
normalized boron  
concentration 

Compute node and  
volume element 

Heat transport between nodes:  
3D non-linear, iterative, numerical solution  
at each time step, with local “sinks” due to boiling 

CRUD/coolant interface is 
time dependent (adaptive): 
deposition & “erosion” 
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2D Profile View 

MAMBA’s Computational Grid:  Modeling CRUD 
is a Coupled Multi-Scale Multi-Physics Problem 
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Fundamental DFT-Based Free Energies and Thermodynamic  
Correlations Have Been Incorporated into MAMBA 

LiBO2 
equilibrium  
constant 

Solubility correlations also 
developed for Li2B4O7 and  
Ni2FeBO5 (bonaccordite) 

Thermodynamic correlations + MAMBA 
transport / boiling models determine  
precipitation threshold and boron uptake  
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Material Modeling Framework for the  
CRUD Challenge Problem 

MAMBA 
     CRUD model     

  ChemPac   
LANL/NNSA 

BOA 
Westinghouse/NNL/EPRI 

Boron Deposition 
Model (BDM) 

MIT 

NiO Model 
NCSU 

Thermodynamics 
ORNL/LANL 

Thermal cond./ 
Sub-cooled Boiling 

LANL / TH-FA 

Experiment 
Westinghouse Walt Loop 
 & Operating Plant Data 
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 Coupled MAMBA / STAR-CCM+ / DeCART initial 
 demonstration simulation for a 3D single pin cell 
 geometry (Annals of Nuclear Energy 85, 1152 (2015)). 

 

 Initial Validation and Benchmark Study of 3D MAMBA 
 v2.0 against the Walt Loop Experiment and BOA v3.0 
 Lead to improved boiling models in industry’s  
    BOA v3.1 code (CASL internal report). 
 

 

 Coupled MAMBA/STAR-CCM+/DeCART  
    simulations for 4x4 subassembly 
     (CASL internal report). 

 
 

 Coupled MAMBA/STAR-CCM+/ANC  
     simulations for 5x5 subassembly for  
     Seabrook Unit 1 cycle 5 
     (Nuclear Engineering & Design, in press). 
 
 

 Coupled MAMBA/MPACT/CTF quarter core simulation  
    Watts Bar Unit 1 cycle 7 (see following presentations). 

 

CASL annual review 

MAMBA Development, Applications, and Validation 
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Movie:  CRUD Simulation Near Grid Spacer  
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Movie:  CRUD Simulation Results for 4x4 
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 5-rod by 5-rod array for which qualitative and 
quantitative plant data is available was selected for 
analysis 

 First high-fidelity, two-way coupled CFD/CRUD 
simulation of an industrial relevant plant cycle 

 Input power provided by industry simulations 
 Showed that both axial and azimuthal thermal hydraulic 

effects dramatically affect CRUD deposition patterns 
 Axial and azimuthal CRUD deposition patterns were 

consistent with plant data 

CRUD (red) 

STAR-CCM+  
5x5 spacer grid  
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Profile View of CRUD Layer for Pin 8 at 502 days 

Actual Seabrook CRUD flake 
(80 microns thick) 
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Comparisons with Seabrook Cycle 5 Oxide Data 
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Summary 
 Reviewed CRUD modeling framework (MAMBA development) 

 crud growth + erosion   
 heat transfer + chimney boiling 
 soluble transport:  convection (boiling induced Darcy flow) + diffusion 
 thermodynamic models + boric acid chemistry 
 microstructure models (porosity) 
 external coupling to fluid and neutronics codes 
 

 Simulation results for a coupled MAMBA/STAR-CCM+/DeCART single pin simulation 
 

 Simulation results for a coupled MAMBA/STAR-CCM+/DeCART 4x4 subassembly  
 

 Results from the first coupled MAMBA/STAR-CCM+ simulation of an operating PWR 
(Seabrook Unit 1 Cycle 5): predicted CRUD surface distributions are consistent with 
measured oxide data 
 

 MAMBA subgrid module developed and used in quarter core  
    Watts Bar Unit 1 cycle 7 simulations (see next presentations) 



CASL Physics Integration 
and Multi-Scale Challenges: 

A CRUD Example  

Kevin T. Clarno 
Oak Ridge National Laboratory 
October 21, 2015 
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Outline 

• VERA: Virtual Environment for Reactor Analysis 
– Prediction of normal operation with modest computers 

 
• Multi-scale challenges 

– Demonstrated with CRUD and discussed for other applications 
 

• Validation with 12 cycles of Watts Bar Unit 1 
– Discussion of results and limitations 

 
• Extensions for CRUD analysis 

– Improvements to Watts Bar Unit 1 models using MAMBA 
 

Presenter
Presentation Notes
Define what modest means – for industry 4000 cores is not a modest computer
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VERA 

• Collection of codes 
– Covering all physics 
– Covering a breadth of scales 
– Some are coupled; some enable coupling 
– All leverage common infrastructure to simplify use and development 

 

VERA: a reactor analysis code suite 
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Multi-Scale Physics Integration Challenges 

• CFD: 
– CFD-informed spacer grid models for CTF 
– CTF boundary and source-terms for CILC analysis 

 
• Monte Carlo transport: 

– Continuous-energy Monte Carlo to understand deterministic errors 
– Monte Carlo with MPACT source for ex-core detectors 

 
• Fuel performance: 

– Core Simulator source and BCs for 3D fuel analysis 
– Simplified Bison models to improve VERA temperature estimates 

Bridging scales within VERA  

Presenter
Presentation Notes
This slide needs to be moved after slide 3
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Full Core Simulation 

• Nominal operation 
– Quasi-static neutronics 
– Steady-state coolant flow 
– Simplified pin heat transfer 

 

• Multi-cycle analyses 
– Rotation and shuffling of fuel 
– Comparisons with operational 

data 
• Zero-power physics tests 
• Boron letdown curves 
• In-core flux detectors 

 

 
 
 
 

 
 

• Accessible by industry 
– Simple input deck 
– Easy-to-use post processing tool 
– Simulation time per cycle: 

• < 24 hours on < 4000 cores 

High-resolution simulation of nominal operation 
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MPACT: pin-resolved neutronics 

• Integrated neutronics 
– Cross section processing 
– Full-core radiation transport 
– Isotopic depletion & decay 

 

• 3D pin-resolved transport 
– 2D radial MOC 
– 1D axial SPn 
– 47 energy groups 
– Scales to O(104) cores 

 

• Validation in progress 
– Critical experiment benchmarks 
– Comparisons to plant data 
– Comparisons with CE Monte Carlo 

 

Full Core PWR Geometry 

Pin 
Exposure 

Power 

U-235 
Density 

Eliminating traditional lattice physics 
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CTF: channel-resolved heat transfer 

• Conjugate heat transfer 
– Radial heat transfer within each pin 
– Thermal-hydraulics throughout core 

• Two-fluid, three-field model 
– Static or transient mode 

 
• Resolving flow in every channel 

– Axially resolved to less than one inch 
– Models each quadrant in every cell 

• 30 million clad surfaces in the core 
– Scales to O(102) cores 

 
• Validation in progress 

– Single and two phase benchmarks 
– Comparisons with CFD 
 

TH modeling of every channel and pin 
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• Currently in 13th fuel cycle 
• 3459 MWth thermal power 
• Unit 2 will startup soon! 

Watts Bar Nuclear Unit 1 Simulations 

• Operated by Tennessee Valley 
Authority in Spring City, TN 

• Traditional four-loop 
Westinghouse PWR 

• Began operation in 1996 
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Validation using Watts Bar 1, Cycles 1-12 

Presenter
Presentation Notes
This slide needs to be moved after slide 9
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Validation using Watts Bar 1, Cycles 1-12 
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WBN1 Cycle 7 Results without 
CRUD models 
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CRUD is a very localized deposit 

• Flow:  
– Grids and mixing vanes induce within-channel 

variations 
• Temperature:  

– Clad surface temperature varies azimuthally about 
the pin 

• CRUD: 
– CRUD grows at the hottest regions of the channel 

• Thermal resistance: 
– CRUD impedes heat transfer, increasing clad 

surface temperatures 
• Boron precipitates: 

– Boron locally precipitates on the surface 
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Application of VERA for CIPS 
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Physics Integration Conclusions 

• Virtual Environment for Reactor Analysis (VERA) 
– Suite of tools for high resolution analysis of reactors and fuel  
– Coupled in several ways to enable the prediction of reactor performance 

 
• CRUD-Induced Power Shift (CIPS) 

– Directly depends on local quantities (sub-cooled boiling) that are globally-dependent 
(power distribution) 

– Azimuthal variation of CRUD growth on the rod cannot be predicted by CTF and requires 
leveraging CFD 

– Requires multi-cycle full core simulations to predict growth on each rod 
 

• Application of VERA for Cycles 1-12 of Watts Bar Unit 1 
– Demonstrated accuracy of VERA through many cycles of commercial operation 
– Highlighted the limitations of neglecting CRUD growth and CIPS 
– Incorporating MAMBA dramatically improved VERA for cycle 7 and beyond 

 
• Physics Integration efforts to account for multi-scale problems 

– Multi-scale physics integration challenges remain while addressing many other Challenge 
Problems 

 
 
 



CASL Crud Challenge 
Problem – Multi-physics 
Applications 

Jeff Secker 
Westinghouse Electric Company 
October 21, 2015 
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Watts Bar Unit 1 Cycle 7 CIPS 

Cycle 7 Experienced CIPS 
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Watts Bar 1 Cycle 7 Predicted Crud 
Distribution 

Power Distribution Crud Distribution 
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Watts Bar 1 
Cycle 7 Predicted 
Boron 
Distribution 

Boron 
Distribution 
at 16.08 
GWD/MTU 
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Watts Bar 1 Cycle 7 Measured and 
Predicted Axial Offset Behavior 
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Cycle 7 Predictions Improved Dramatically 

CIPS in Cycle 7 simulated by VERA 


[image: \\ifba\projects\watts_bar\lo-fi\cy10_10.275_GWDMT.png]
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CASL CIPS Modeling Conclusions 

• CASL has developed multi-physics tools to model crud 
deposition on PWR cores and the resulting effects on 
core behavior 

• Pin resolved 3D transport neutronics (MPACT) has been 
coupled with sub-channel thermal-hydraulics (CTF) and 
crud/chemistry models (MAMBA) to create a multi-
physics crud modeling and simulation tool 

• The CASL CIPS modeling tools accurately model the 
CIPS behavior experienced at Watts Bar Unit 1 Cycle 7 

• Addition improvements to the models are planned and 
underway 

CASL CIPS Challenge Problem 
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