
	

User	 Guidelines	 and	 Best	
Practices	 for	 CASL	 VUQ	
Analysis	 Using	 Dakota	

	
CASL-‐U-‐2014-0038-000

	
Brian	 M.	 Adams1	

Russell	 W.	 Hooper1	
Allison	 Lewis2	

Jerry	 A.	 McMahan,	 Jr.2	
Ralph	 C.	 Smith2	
Laura	 P.	 Swiler1	

Brian	 J.	 Williams3	
	

1Sandia	 National	 Laboratories	
2North	 Carolina	 State	 University	
3Los	 Alamos	 National	 Laboratory	

	
March	 28,	 2014	

L3:VUQ.V&V.P8.01	
	

CASL-U-2014-0038-000

User Guidelines and Best Practices for

CASL VUQ Analysis Using Dakota

Brian M. Adams 1

Russell W. Hooper 2

Allison Lewis 3

Jerry A. McMahan, Jr. 4

Ralph C. Smith 5

Laura P. Swiler 6

Brian J. Williams 7

March 28, 2014

1briadam@sandia.gov
2rhoope@sandia.gov
3allewis2@ncsu.edu
4jamcmaha@ncsu.edu
5rsmith@ncsu.edu
6lpswile@sandia.gov
7brianw@lanl.gov

CASL-U-2014-0038-000

Contents

1 Overview 3
1.1 Manual Contents . 4
1.2 Getting Started with Dakota . 6
1.3 Acknowledgments . 9

2 Application Example Problems 11
2.1 Cantilever beam . 11
2.2 General Linear Model Verification Test Suite . 13
2.3 COBRA-TF Thermal-Hydraulics Simulation Problem 16

2.3.1 COBRA-TF Simulator Overview . 16
2.3.2 COBRA-TF test problem description . 17
2.3.3 VUQ Parameters in COBRA-TF Problem 6 19

3 Sensitivity Analysis 21
3.1 Terminology . 21

3.1.1 Local Versus Global Sensitivity . 21
3.1.2 Sensitivity Metrics . 22

3.2 Recommended Methods . 25
3.2.1 Centered Parameter Study . 26
3.2.2 Multidimensional Parameter Study . 28
3.2.3 Global LHS Sampling . 33
3.2.4 PSUADE/Morris Method . 36

3.3 Summary and Additional Approaches . 38

4 Surrogate Models 40
4.1 Polynomial Regression Models . 42

4.1.1 Fitting Polynomial Surrogates in Dakota . 43
4.2 Kriging and Gaussian Process Models . 46

4.2.1 Fitting Kriging Surrogates in Dakota . 49
4.3 Summary . 50

5 Optimization and Deterministic Calibration 54
5.1 Terminology and Problem Formulations . 55

5.1.1 Special Considerations for Calibration . 56
5.2 Recommended Methods . 58

1

CASL-U-2014-0038-000

5.2.1 Gradient-Based Local Methods . 58
5.2.2 Derivative-Free Local Methods . 62
5.2.3 Derivative-Free Global Methods . 67

5.3 Summary and Additional Approaches . 70

6 Uncertainty Quantification 72
6.1 Uncertainty Propagation . 73

6.1.1 Sampling Methods . 73
6.1.2 Stochastic Polynomial Methods . 74
6.1.3 Verification . 76
6.1.4 Prediction Intervals . 77
6.1.5 Uncertainty Propagation: Cantilever Beam Example 77

6.2 Bayesian Model Calibration . 85
6.2.1 Direct Implementation of Bayes’ Relation . 86
6.2.2 Sampling Based Metropolis Algorithms . 88
6.2.3 Model Calibration and Surrogate Models . 89
6.2.4 Verification . 90
6.2.5 Synthetic Data . 90
6.2.6 Bayesian Calibration Examples . 91

7 COBRA-TF VUQ Studies 105
7.1 Initial Parameter Studies with Two Power Distributions 106
7.2 COBRA-TF Sensitivity Studies . 106

7.2.1 Centered Parameter Study . 106
7.2.2 Latin hypercube sampling studies . 111
7.2.3 Morris Screening . 115
7.2.4 Screening to Reduce Parameters . 115

7.3 Calibration Studies . 118
7.3.1 Deterministic Calibration . 119
7.3.2 Surrogate Construction . 119
7.3.3 Bayesian Calibration . 124

A General Linear Model Verification Test Suite 131
A.1 Verification Scenarios . 132
A.2 Verification Tests . 135

B Procedure for Running COBRA-TF Studies 137

2

CASL-U-2014-0038-000

Chapter 1

Overview

Sandia’s Dakota software (available at http://dakota.sandia.gov) supports science and engi-
neering transformation through advanced exploration of simulations. Specifically it manages and
analyzes ensembles of simulations to provide broader and deeper perspective for analysts and de-
cision makers. This enables them to enhance understanding of risk, improve products, and assess
simulation credibility.

In its simplest mode, Dakota can automate typical parameter variation studies through a generic
interface to a physics-based computational model. This can lend efficiency and rigor to manual
parameter perturbation studies already being conducted by analysts. However, Dakota also de-
livers advanced parametric analysis techniques enabling design exploration, optimization, model
calibration, risk analysis, and quantification of margins and uncertainty with such models. It di-
rectly supports verification and validation activities. Dakota algorithms enrich complex science and
engineering models, enabling an analyst to answer crucial questions of

• Sensitivity: Which are the most important input factors or parameters entering the simu-
lation, and how do they influence key outputs?

• Uncertainty: What is the uncertainty or variability in simulation output, given uncertainties
in input parameters? How safe, reliable, robust, or variable is my system? (Quantification of
margins and uncertainty, QMU)

• Optimization: What parameter values yield the best performing design or operating con-
dition, given constraints?

• Calibration: What models and/or parameters best match experimental data?

In general, Dakota is the Consortium for Advanced Simulation of Light Water Reactors (CASL)
delivery vehicle for verification, validation, and uncertainty quantification (VUQ) algorithms. It
permits ready application of the VUQ methods described above to simulation codes by CASL
researchers, code developers, and application engineers.

More specifically, the CASL VUQ Strategy [26] prescribes the use of Predictive Capability Matu-
rity Model (PCMM) assessments [30]. PCMM is an expert elicitation tool designed to characterize
and communicate completeness of the approaches used for computational model definition, verifica-
tion, validation, and uncertainty quantification associated with an intended application. Exercising

3

CASL-U-2014-0038-000

http://dakota.sandia.gov

a computational model with the methods in Dakota will yield, in part, evidence for a predictive ca-
pability maturity model (PCMM) assessment. Table 1.1 summarizes some key predictive maturity
related activities (see details in [26]), with examples of how Dakota fits in.

Table 1.1: Summary of Dakota relevance for PCMM-related activities.

VUQ/PCMM Activity Dakota relevance

select quantities of interest (QOIs) (limited)

software quality assurance (SQA) (limited)

code verification conduct parameter studies as a function of
mesh quality; calculate convergence rate

solution verification conduct parameter studies over solver param-
eters or mesh quality; calculate convergence
rate

validation run ensemble of simulations and make (po-
tentially uncertainty-aware) comparisons with
experimental data, assess model form uncer-
tainty

sensitivity conduct global sensitivity analysis to rank or
screen parameters; supports quantified pa-
rameter ranking table (QPRT)

uncertainty quantification compute uncertainty in QOIs for risk-
informed decision making

calibration tune or refine models for use in particular sce-
narios

This manual offers CASL partners a guide to conducting Dakota-based VUQ studies for CASL
problems. It motivates various classes of Dakota methods and includes examples of their use on
representative application problems. On reading, a CASL analyst should understand why and how
to apply Dakota to a simulation problem.

1.1 Manual Contents

This user’s guide emphasizes best practice and highlights a few key approaches to solving the
VUQ analysis problems of greatest interest to CASL today. The remainder of this chapter summa-
rizes high level steps to getting started using Dakota. Chapter 2 describes simple, but physically
meaningful, application problems that will be used to demonstrate each of the Dakota algorithmic
approaches described in subsequent chapters. Among the examples is a CASL-relevant COBRA-TF
thermal-hydraulic simulator problem.

Chapters 3 through 6 tour four of Dakota’s major algorithmic capabilities. In each chapter you
will find high-level analysis goals and terminology, with references to more detailed descriptions
and theory; guidance on how to choose from the available Dakota approaches and assess whether
they are working; and application examples, including Dakota input, Dakota output, and post-
processing/interpretation. The major VUQ activities addressed by this manual are:

4

CASL-U-2014-0038-000

• Parameter Studies and Sensitivity Analysis: Dakota parameter studies automate typ-
ical parameter variation studies such as running the model at a tensor grid of parameter
values or varying them 1%, 5%, 10% from a nominal value. Sensitivity analysis determines
model parameters most influential on quantities of interest (responses). This can be used to
rank the influence of parameters, as in a Quantified Parameter Ranking Table (QPRT) [26],
or screen/down-select to a tractable number of free parameters for follow-on analyses. See
Chapter 3, Sensitivity Analysis for an overview of parameter studies, global sensitivity analy-
sis methods and metrics, and a demonstration of using Dakota to perform parameter ranking.

• Surrogate Models: Any of the Dakota studies described can be conducted directly on a
computational model or with surrogate model indirection. Surrogate models are inexpensive
approximate models that are intended to capture the salient features of an expensive high-
fidelity model. In this manual and the Dakota context, surrogate models are not based
on simplifying physical assumptions. Rather they are response surface models constructed
automatically by Dakota based on empirical samples of the true simulation’s input/output
behavior. For example, in CASL one might run costly CFD simulations at a set of design
points in a parameter space and then have Dakota build an algebraic Kriging model on the
QOI data for use in optimization. Chapter 4 has an overview of the most commonly used
surrogate models, which can smooth noisy model responses, or reduce computational cost. On
reading it, you will be able to create Dakota studies that automatically run a computational
model, generate a response surface model, and evaluate it in the context of another Dakota
study.

• Calibration: Dakota provides capabilities for automatically tuning model parameters to
best match experimental (or high-fidelity model) data. This process is also known as pa-
rameter estimation, calibration, data assimilation, or model inversion to update knowledge
of parameter values based on additional data. A CASL example would be tuning crud chem-
istry reaction rates to match experimental data. Approaches yielding single point estimates
of parameters are described in Chapter 5, Optimization and Deterministic Calibration, while
Bayesian methods resulting in a probability distribution for the unknown parameters are
covered in Section 6.2, Bayesian Model Calibration.

• Design Optimization: Adjusting model parameters to meet desired performance criteria
while satisfying other constraints. For example, determine optimal shape to minimize vi-
bration, or design mixing vanes to minimize crud formation. Chapter 5, Optimization and
Deterministic Calibration will help you choose from among Dakota optimization methods
based on problem characteristics and your specific optimization goals.

• Uncertainty Quantification (UQ): Model predictions with quantified uncertainty support
validation and follow-on decision making. UQ methods accept characterizations of input pa-
rameter uncertainty and run the computational model to compute the resulting uncertainties
on response quantities of interest. UQ methods, which yield statistics on QOIs (mean, stan-
dard deviation, distribution, range), are described in Chapter 6, Uncertainty Quantification.

This guide selectively focuses on two to three ways to execute each type of VUQ analysis
depending on goals and problem characteristics. The approaches included have worked well in
practice on a broad range of problems in computational science and engineering. When challenges

5

CASL-U-2014-0038-000

are encountered, many alternative and advanced methods that may perform better are available in
Dakota.

The manual concludes with a realistic thermal-hydraulics example from a CASL “Progression
Problem” in Chapter 7, COBRA-TF VUQ Studies. The example demonstrates a VUQ activity flow
from initial parameter studies, through sensitivity analysis for parameter screening, to calibration
on a reduced parameter set. Construction of the surrogate utilized in model calibration as a
substitute for more costly direct COBRA-TF calculations is also illustrated.

Additional Resources

This user’s guide is not an exhaustive guide to Dakota’s capabilities. It is a high-level supplement
to other Dakota and VUQ resources. Users reaching its extent should consult:

• The Dakota User’s Manual [1]: a more complete summary of Dakota capabilities from get-
ting started through advanced methods (http://dakota.sandia.gov/docs/dakota/5.4/
Users-5.4.pdf);

• The Dakota Reference Manual [2]: extensive guidance on valid keywords to use in a Dakota in-
put file to specify a Dakota study (http://dakota.sandia.gov/docs/dakota/5.4/html-ref/
index.html);

• The directories dakota/examples and dakota/test included with Dakota distributions which
contain examples of input files referenced in the documentation and many more (also available
at https://software.sandia.gov/trac/dakota/browser/tags/5.4/examples and https:

//software.sandia.gov/trac/dakota/browser/tags/5.4/test);

• The Dakota Theory Manual [3] (http://dakota.sandia.gov/docs/dakota/5.4/Theory-5.
4.pdf) and research publications available at http://dakota.sandia.gov/publications.

html: detailed background on algorithmic approaches developed directly in Dakota to tackle
challenging science and engineering analyses; and

• Publications referenced throughout all the above.

This document refers to Dakota 5.4 and its documentation; newer versions may be available on
the Dakota website. This guide for Dakota usage in CASL aims to be generic and thus does not
supplant any domain-specific best practices or guidance for performing VUQ-related studies.

1.2 Getting Started with Dakota

The remainder of this manual largely focuses on selecting and applying Dakota methods and un-
derstanding the results. This section surveys at a higher level some prerequisites for using Dakota,
with references to additional resources for help.

Know Why to Use Dakota

Understanding your simulation’s characteristics, your VUQ analysis goals, and Dakota’s relevance
in achieving them are critical first steps. These likely seem obvious, but are crucial in order to select
from the many available methods in Dakota. This guide aims to address this background by offering

6

CASL-U-2014-0038-000

http://dakota.sandia.gov/docs/dakota/5.4/Users-5.4.pdf
http://dakota.sandia.gov/docs/dakota/5.4/Users-5.4.pdf
http://dakota.sandia.gov/docs/dakota/5.4/html-ref/index.html
http://dakota.sandia.gov/docs/dakota/5.4/html-ref/index.html
https://software.sandia.gov/trac/dakota/browser/tags/5.4/examples
https://software.sandia.gov/trac/dakota/browser/tags/5.4/test
https://software.sandia.gov/trac/dakota/browser/tags/5.4/test
http://dakota.sandia.gov/docs/dakota/5.4/Theory-5.4.pdf
http://dakota.sandia.gov/docs/dakota/5.4/Theory-5.4.pdf
 http://dakota.sandia.gov/publications.html
 http://dakota.sandia.gov/publications.html

a high-level introduction to some key analysis methods, their application, and benefits. Other
resources to understanding Dakota’s applicability include training materials, publicity materials,
and publications on the Dakota website http://dakota.sandia.gov, as well as the Dakota User’s
Manual [1].

Access the Software and Other Resources

Dakota: Dakota is available to CASL partners as part of the Virtual Environment for Reactor Ap-
plications (VERA). It can be checked out via git clone from casl-dev.ornl.gov:/git-root/Dakota.
Dakota is also distributed with VERA releases under Trilinos/packages/TriKota/Dakota. Ex-
amples of Dakota applied to CASL problems are evolving. These are archived in milestone
reports and protected in the VERA software in the VUQDemos suite, available via git clone
from casl-dev.ornl.gov:/git-root/VUQDemos. Dakota also has a public download site http:

//dakota.sandia.gov/download.html, which may be useful for CASL partners without ready
access to the VERA development environment at Oak Ridge National Laboratory (ORNL).

This Manual and Examples: Examples from this manual, including input, output, auxiliiary
data files, and scripts are available from the CASL Git repository at
casl-dev.ornl.gov:/git-root/VUQDemos/CaslDakotaManual. The LATEXsource and images are
also included.

Help Resources: For help beyond this manual and the documents referenced herein, see the
Dakota website: http://dakota.sandia.gov. It includes software downloads, documentation,
publications, and training materials. It also has guidance on seeking general help with Dakota
via the dakota-users mailing list (dakota-users@software.sandia.gov). CASL-specific issues
should be directed to casl-vuq@casl.gov.

How to Interact with Dakota

An overall Dakota analysis process is depicted in Figure 1.1. The specification of the VUQ analysis
problem to Dakota is given in the text-based Dakota input file, including the method (algorithm)
which dictates how Dakota generates parameter sets at which to run the user’s simulation. As
Dakota runs, it will iteratively evaluate the simulation at these parameter sets by running a user-
provided analysis driver and collecting corresponding quantities of interest output by the simulation
workflow. When complete, the Dakota executable will produce console text output and tabular
data with VUQ results for subsequent analysis.

Interface Dakota to the Simulation

Dakota requires an analysis driver to communicate with the computational model. The contract
for this Dakota/simulation interface is straightforward: it must be an automated workflow that
accepts Dakota parameters as input from a text file, runs the simulation in a batch/non-interactive
mode, and produces responses (quantities of interest derived from simulation output) in a text file
for consumption by Dakota.

As Dakota runs, it will determine values of parameters for which response data is needed. When
ready to evaluate the simulation at such a parameter set, Dakota will write a “parameters file” with
the values of the variables. Dakota will then invoke the specified analysis driver, represented by the
dashed blue box in Figure 1.1. This analysis driver must implement the automated process that

7

CASL-U-2014-0038-000

http://dakota.sandia.gov
http://dakota.sandia.gov/download.html
http://dakota.sandia.gov/download.html
http://dakota.sandia.gov
mailto:dakota-users@software.sandia.gov
mailto:casl-vuq@casl.gov

Dakota Text Input

File

Dakota Output:

Text and Tabular Data

Simulation

(physics model)
Code

Input

Code

Output

Dakota Parameters

File
variables

Preprocessing
User-supplied

automatic post-

processing

Analysis Driver
interface

QOIs in Dakota

Results File
responses

Dakota Executable
method

Figure 1.1: Components of a Dakota study, including Dakota input and output, and interface to a
computational model (simulation).

takes a Dakota parameters file as input and produces a Dakota results file as output. Typically
this driver is a script which includes preprocessing, running the code, and postprocessing to extract
QOIs from simulation output. When the driver completes, Dakota requires the “results file” to
contain the quantities of interest resulting from running the simulation at the specified parameter
values.

Additional resources for creating and running a Dakota/simulation workflow include:

• High level guidance in “User Supplied Simulation Code Examples” in the Dakota Tutorial in
the Dakota User’s Manual [1], with more details in the “Advanced Simulation Code Interfaces”
chapter, together with example code in dakota/examples/script interfaces.

• Considerations for having Dakota manage concurrent simulation runs in parallel, as this is a
common need. Managing parallel concurrency locally, within queue, and out of queue, includ-
ing batch submission and later retrieval are addressed by the Dakota User’s Manual, “Appli-
cation Parallelism Use Cases”, together with examples in dakota/examples/parallelism.

• CASL-specific Dakota workflows with COBRA-TF and Insilico, demonstrated in the above
referenced VUQDemos.

Understand Dakota Input Files

Once an interface is constructed between Dakota and the simulation, one may readily apply any
Dakota method by simply changing the input file. Dakota input files are simple plain text files with
six categories of information that can appear (some are optional and some may appear multiple
times in advanced studies). Four of these are indicated notionally in Figure 1.1:

• strategy (not depicted): overall control of Dakota methods and tabular output data.

8

CASL-U-2014-0038-000

• method: specifies the iterative analysis method being run on the model, for example Latin
hypercube sampling or gradient-based parameter estimation.

• variables: characterization of the model parameters Dakota is varying in the study, such as
lognormal uncertain or continuous design, together with supplementary fixed (state) param-
eters.

• responses: quantities of interest returned to Dakota for analysis.

• interface: the simulation workflow mapping variables to responses in an automated way;
typically a script that orchestrates this workflow.

• model (not depicted): a container encapsulating a set of variables, interface, and responses for
presentation to a method; useful for specifying that a surrogate model should be automatically
constructed to serve as a proxy for an expensive computational model.

This guide shows and explains a number of examples of input files which configure Dakota
to conduct various kinds of iterative analyses. They can be taken verbatim from the text to
conduct Dakota studies and will also be available from CASL records systems when this manual is
published. Additional examples are available in the various Dakota manuals and with the Dakota
software itself. Specific guidance on individual Dakota keywords is available in the Dakota Reference
Manual [2], which can help when trying to determine how to configure Dakota for a new kind of
study.

Understand Dakota Results

This document offers an introduction to Dakota output, including log file output and tabular data
to understand the results of studies. Often this data must be interpreted or post-processed with
external tools to be useful in a decision making context. Examples are included in this manual to
demonstrate this.

1.3 Acknowledgments

This CASL/Dakota manual borrows heavily from the Dakota 5.4 User’s Manual [1]. We heartily
thank the authors of the most recent version of that document: Brian M. Adams, Lara E. Bauman,
William J. Bohnhoff, Keith R. Dalbey, John P. Eddy, Mohamed S. Ebeida, Michael S. Eldred,
Patricia D. Hough, Kenneth T. Hu, John D. Jakeman, Laura P. Swiler, and Dena M. Vigil.

Dakota’s use of the Quantification of Uncertainty for Estimation, Simulation, and Optimization
(QUESO) library is facilitated through close interaction with its developers at the University of
Texas at Austin. Ernesto E. Prudencio, Nicholas Malaya, and Damon McDougall have kindly
provided examples and test problems implemented in QUESO.

We also appreciate the efficient implementation of code changes to COBRA-TF made by
Noel K. Belcourt to expose code parameters to Dakota needed to drive the various COBRA-TF
parameter studies described in this manual.

We appreciate the valuable feedback provided by several reviewers of this manual, including
Patty Hough, Vince Mousseau, Rod Schmidt, and Dena Vigil.

This research was supported by the Consortium for Advanced Simulation of Light Water Re-
actors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for

9

CASL-U-2014-0038-000

http://www.casl.gov
http://www.energy.gov/hubs

Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-
AC05-00OR22725. Sandia National Laboratories (SNL), North Carolina State University (NCSU),
and Los Alamos National Laboratory (LANL) are core CASL partners.

10

CASL-U-2014-0038-000

Chapter 2

Application Example Problems

This chapter describes representative, though simplified, application problems that will be used to
demonstrate various Dakota approaches. Each of the three application examples has strengths to
help bridge abstract Dakota concepts and guidance throughout the remainder of this manual to
concrete practice:

• Cantilever beam: A simple static mechanics analysis where prescribed geometry, material
properties, and loads on a cantilevered beam map to to quantities of interest such as weight,
displacement, and stress. The physical meaning is intuitive, the physics equations have a
simple algebraic form, and a simulator for it is included with Dakota, along with several
example input files. Each Dakota analysis technique in Chapters 3 through 6 includes a
worked example using the cantilever beam problem.

• General linear model: A model with closed algebraic form specifically designed to support
algorithm and code verification, i.e., to verify that VUQ algorithms are working as expected.
This example consists of a linear mapping from model parameters to responses, with an
additive noise term. It is used to verify the performance of Bayesian calibration methods in
Section 6.2.

• COBRA-TF thermal-hydraulics: A coupled physics, single assembly reactor model prob-
lem simulated with CASL’s COBRA-TF thermal-hydraulics code. The most physically realis-
tic example, this problem demonstrates VUQ infrastructure for varying model form and other
parameters, running a computational model, and distilling quantities of interest from code
output. This example is the focus of Chapter 7, where it is used to demonstrate parameter
screening, calibration, and surrogate construction.

2.1 Cantilever beam

The cantilever beam example problem is adapted from the reliability-based design optimization
literature [36], [42]. The uniform cantilever beam is shown in Figure 2.1, with a left anchor and a
fixed length L = 100in. The beam width and thickness are parameterized by w and t, respectively.
The free end of the beam is subject to horizontal load X and vertical load Y .

Given Young’s elastic modulus E, the simplified algebraic physics equations used to model the

11

CASL-U-2014-0038-000

Figure 2.1: Cantilever beam test problem.

beam area A (a stand-in for weight W), stress S, and displacement D are:

W ∝ A = wt

S =
600

wt2
Y +

600

w2t
X (2.1)

D =
4L3

Ewt

√(
Y

t2

)2

+

(
X

w2

)2

Given a specified maximum displacement D0 and yield stress R, the quantities of interest for
the Dakota study (Dakota “responses”) are defined to be:

area = wt

stress = S −R =
600

wt2
Y +

600

w2t
X −R (2.2)

displacement = D −D0 =
4L3

Ewt

√(
Y

t2

)2

+

(
X

w2

)2

−D0,

where area is used as a surrogate for weight, and stress and displacement are defined as dif-
ferences with respect to the prescribed values of stress and displacement. The parameters in the
problem are summarized with their nominal values in Table 2.1. Parameters w and t have simple
bounds, while R,E,X, and Y may be considered as random variables and modeled with normal
distributions N (µ, σ2) when conducting uncertainty studies.

Table 2.1: Parameters for the cantilever beam problem.

parameter description nominal value range/distribution

w width 2.5 [1.0, 4.0]

t thickness 2.5 [1.0, 4.0]

R yield stress 40000 N (4.0E5, 4.0E6)

E Young’s modulus 2.9E7 N (2.9E7, 2.1025E12)

X horizontal load 500 N (500, 1.0E4)

Y vertical load 1000 N (1.0E3, 1.0E4)

L beam length 100 -

D0 maximum displacement 2.2535 -

The built-in Dakota analysis driver mod cantilever computes the outputs area, stress, and
displacement given specified inputs w, t, R, E, X, and Y . These cantilever input/output mappings

12

CASL-U-2014-0038-000

will be utilized throughout this manual to illustrate the application of core CASL VUQ technologies
with Dakota. In Section 3.2, the sensitivity of the quantities of interest with respect to the input
parameters is assessed to rank their importance and exercise the model.

Then, in Sections 4.1.1 and 4.2.1, response surface models (surrogates) for the parameter to
response mapping are generated based on a small number of sampled runs of cantilever. This
emulates the practical process one must use when models are costly. In Section 5.2, a deterministic
design optimization problem is solved to design the beam geometry. The goal is to minimize the
weight (or equivalently, the cross-sectional area) of the beam subject to a displacement constraint
and a stress constraint. The parameters R, E, X, and Y are fixed at their nominal values and the
deterministic design problem is given by

minimize area = wt

subject to stress = S −R ≤ 0 (2.3)

displacement = D −D0 ≤ 0

1.0 ≤ w ≤ 4.0

1.0 ≤ t ≤ 4.0

In Section 5.2.1, the cantilever beam is calibrated to synthetic experimental data for area, stress,
and displacement, to find the values of w, t, and E yielding best agreement with the data. Finally,
when considered for uncertainty quantification in Chapter 6, the design variables are fixed at
their nominal or optimal values, and the Dakota study is conducted over the normally-distributed
uncertain parameters R, E, X, and Y . This yields estimates of the mean, standard deviation, and
overall distribution of the quantities of interest.

2.2 General Linear Model Verification Test Suite

Whereas most CASL codes exhibit a nonlinear input-output relation, linearly parameterized prob-
lems serve an important role for algorithm and code verification. These uses include the following:

• They provide a hierarchy of models, which can be used to test the convergence of Bayesian
model calibration algorithms through comparison with analytic solutions.

• They provide a regime to test of the accuracy of uncertainty propagation algorithms since
one can employ analytic relations between input and output densities.

• They facilitate the testing of algorithms for heavy-tailed distributions.

• They provide a framework for analytically testing algorithms to construct Sobol global sen-
sitivity indices (described in Section 3.1.2).

The family of linear models described in this section is used to verify the performance of Bayesian
calibration methods in Section 6.2. A high-level overview of the problem appears here, with addi-
tional details in Appendix A. A simulator implementing this problem is available on request from
the authors.

We employ the linear regression model

Y = Gβ + ε(λ, φ). (2.4)

13

CASL-U-2014-0038-000

as a test problem for verifying the Bayesian calibration capabilities in Dakota, which currently
include Quantification of Uncertainty for Estimation, Simulation, and Optimization (QUESO) and
Differential Evolution with Self-Adaptive Randomized Subspace Sampling (via the DREAM soft-
ware package). In this model Y is the N -dimensional vector of noisy observations of the quantity of
interest. The N ×Nβ matrix G is known and the Nβ components of the vector β are unknown re-
gression parameters to be estimated. The N -dimensional random variable ε represents the random
measurement noise in the observations. The measurement noise is normally distributed with mean
zero and N ×N covariance matrix R(φ)/λ. The precision (inverse variance) λ of the ε process is
a positive scalar and the permissible values for the correlation structural parameter φ depend on
the type of correlation being considered as discussed below.

The data for the calibration problem is generated using (2.4) after selecting values for β, λ, and
φ which are considered the true parameter values (designated β0, λ0, and φ0). Table 2.2 summarizes
three separate cases distinguished by the choice of parameters to be calibrated (or equivalently, by
the set of true values considered to be known).

Case Calibrated Known

1 β λ0, φ0

2 β, λ φ0

3 β, λ, φ -

Table 2.2: Cases considered for the general linear model verification test suite.

In Case 1, we estimate the regression parameters β assuming the statistics of the measurement
noise are perfectly characterized. Case 2 removes explicit knowledge of the error ε precision λ.
In Case 3, we assume further that the correlation structure of the measurement noise is only
qualitatively known and estimate its parameters φ.

The likelihood function used in calibration is proportional to

λN/2

det (R(φ))1/2
exp

[
−λ

2
(y −Gβ)T R−1(φ) (y −Gβ)

]
.

For cases where the true value of λ is known, λ = λ0 is used for computing the likelihood. Similarly,
φ = φ0 in likelihood calculations when φ is known.

Each of the three cases has two subcases defined by whether an informative or noninformative
prior is specified for β. The informative prior weights the regression parameter space to indicate
a belief that the true parameters are more likely to lie within certain subsets of the parameter
domain, while the noninformative prior is agnostic with respect to the location of the regression
parameters.

14

CASL-U-2014-0038-000

For Case 1, the informative prior for β is specified via a Gaussian random variable having
Nβ-dimensional mean vector µ and diagonal Nβ ×Nβ covariance matrix

1

λ

q+r1
qr1

0 · · · 0

0 q+r2
qr2

· · · 0

...
...

. . .
...

0 0 · · ·
q+rNβ
qrNβ

,

where q is a small, positive parameter and r1, . . . , rNβ are positive parameters.
In Case 2, the informative prior for β is the same as in Case 1, and λ0 is replaced by a random

variable λ having prior density proportional to 1/λ. This prior specification is invariant to bijective
transformation, i.e. it does not depend on how scale is represented in the error process ε. The
prior specification for (β, λ) in Case 3 carries over from Case 2. In Case 3, fixed φ0 is replaced by
random φ, and the prior distribution for φ is specified below.

For Case 1, the noninformative prior for β specifies a uniform density π(β) ∝ 1. Case 2 employs
the Jeffreys noninformative prior π(β, λ) ∝ 1/λ, which is invariant to bijective transformations of
the location and scale parameters. Case 3 also employs the Jeffreys prior for β and λ, while the
prior distribution for φ is specified below.

Under the assumption of independent and identically distributed errors εi, the sample means
of the parameters being calibrated converge to their corresponding true values as the number of
measurements, N , is increased. Furthermore, for any N and errors εi sampled from a mean-zero
process having arbitrary covariance structure, the distribution of parameters sampled from QUESO
converges to a probability distribution known analytically for (β, λ), and numerically for φ, as
the number of QUESO samples is increased. Appendix A provides a more general and rigorous
specification of prior distributions for the three cases as well as analytical results for calibrated
parameter distributions.

Four types of correlation structure are considered. The types and corresponding domain of φ
follow:

1. No correlation, no φ dependence.

2. Equal correlation, 0 < φ < 1.

3. Order 1 autoregressive correlation, −1 < φ < 1.

4. Gaussian spatial correlation, φ = (φ1, . . . , φM), φi ≥ 0.

For each correlation type, a correlation function and the resulting correlation matrix R(φ) is pro-
vided in Appendix A. The no correlation case indicates no correlation between output measurements
and no dependence on φ. Equal correlation specifies that all output measurements are equally corre-
lated with φ determining the amount of correlation. For order 1 autoregressive correlation, any two
output measurements yi, yj become less correlated the further apart they are in index (i.e., as |i−j|
increases). For Gaussian spatial correlation, the correlation between two output measurements de-
pends on the spatial locations of the corresponding input variables specifying each measurement,
with φ a vector that adjusts this spatial dependence individually for each input dimension.

15

CASL-U-2014-0038-000

The prior distribution for φ is taken to be uniform on the allowable domain for φ in the equal
and autoregressive correlation cases. For Gaussian spatial correlation, assume the M inputs x are
restricted by the bounds `i ≤ xi ≤ ui for i = 1, . . . ,M . The prior distribution π(φ) for φ is given
by

π(φ) ∝
M∏
i=1

[ρi(φi)]
aρ [1− ρi(φi)]bρ−1 χ[0,∞)(φi) ,

where ρi(φ) = exp
[
−φ(ui − `i)2/4

]
for i = 1, . . . ,M , (aρ, bρ) = (1, 0.1), and χ[0,∞)(φ) is the

characteristic function taking value 1 for φ ≥ 0 and 0 for φ < 0.

2.3 COBRA-TF Thermal-Hydraulics Simulation Problem

This section provides an overview of COBRA-TF and a particular thermal-hydraulics simulation
problem, CASL VERA Progression Problem 6. An end-to-end demonstration of Dakota methods
using this COBRA-TF model is in Chapter 7, COBRA-TF VUQ Studies. The full Dakota/COBRA-
TF example is available in the CASL software repositories. Details on accessing it are provided in
Appendix B.

2.3.1 COBRA-TF Simulator Overview

COBRA-TF is a thermal-hydraulic (T/H) simulation code designed for light water reactor (LWR)
analysis) [5]. COBRA-TF has a long lineage back to the original COBRA computer code developed
in 1980 by Pacific Northwest Laboratory, under sponsorship of the Nuclear Regulatory Commis-
sion (NRC). The original COBRA began as a thermal-hydraulic rod-bundle analysis code, but
subsequent versions have updated and expanded over the past several decades to cover almost all
steady-state and transient analyses of both pressurized water reactors (PWRs) and boiling water
reactors (BWRs). COBRA-TF is currently developed and maintained by the Reactor Dynamics
and Fuel Management Group (RDFMG) at the Pennsylvania State University (PSU). Additional
information can be found at the RDFMG website, http://www.mne.psu.edu/RDFMG/index.html.

COBRA-TF includes a wide range of thermal-hydraulic models important to LWR safety analy-
sis including flow regime dependent two-phase wall heat transfer, inter-phase heat transfer and drag,
droplet breakup, and quench-front tracking. COBRA-TF also includes several internal models to
help facilitate the simulation of realistic fuel assemblies. These models include spacer grid models,
a fuel rod conduction model, and built-in material properties for both the structural materials and
the coolant (i.e., steam tables).

COBRA-TF uses a two-fluid, three-field representation of the two-phase flow. The equations
and fields solved are:

• Continuous vapor (mass, momentum and energy)

• Continuous liquid (mass, momentum and energy)

• Entrained liquid drops (mass and momentum)

• Non-condensable gas mixture (mass)

16

CASL-U-2014-0038-000

http://www.mne.psu.edu/RDFMG/index.html

Reasons for selecting COBRA-TF as the primary T/H solver in the VERA core simulator include:
reasonable run-times compared to CFD (although CFD will be available as an option), the fact
that it is being actively developed and supported by PSU, ability to support future applications of
VERA such as transient safety analysis and BWR and SMR applications.

2.3.2 COBRA-TF test problem description

The thermal-hydraulics application example problem used in this manual is a coupled single assem-
bly problem known in CASL as Progression Problem 6 [31]. It simulates a single PWR assembly
based on the dimensions and state conditions of Watts Bar Unit 1 Cycle 1. The dimensions for the
assembly are identical to AMA Progression Benchmarks “Problem 3” and “Problem 6”. Problems
3 and 6 are identical, except that Problem 3 is at Hot Zero Power (HZP) and has no T/H feedback,
and Problem 6 is at Hot Full Power (HFP) and includes T/H feedback. The test case was run at
a boron concentration of 1300 ppm and a 100% power level.

The assembly is a standard 17x17 Westinghouse fuel design with uniform fuel enrichment. There
are no axial blankets or enrichment zones. The assembly has 264 fuel rods, 24 guide tubes, and
a single instrument tube in the center. There are no control rods or removable burnable absorber
assemblies in this problem. The primary geometry specifications of the fuel rod and guide tube
materials are given in Figure 2.2 and Table 2.3. The geometry specification for the assembly is
given in Figure 2.3 and Table 2.4. The thermal-hydraulic specifications for this problem are shown
in Table 2.5.

The COBRA-TF results in this CASL/Dakota manual use a simplified and more efficient adap-
tation of Progression Problem 6. This study involves only the thermal hydraulic component of
Progression Problem 6, holding constant the power supplied by the neutronics component in the
full problem. In practice, the neutronics component in the full problem has proved to be at least an
order of magnitude more computationally expensive than the thermal hydraulics component. This
adapted problem allows relatively rapid and representative sensitivity studies to be performed while
expediting testing and refinement of the CASL VUQ software toolset that drives these studies.

Table 2.3: COBRA-TF Problem 6 fuel rod and guide tube descriptions.
Parameter Value Units

Fuel Pellet Radius 0.4096 cm
Fuel Rod Clad Inner Radius 0.418 cm
Fuel Rod Clad Outer Radius 0.475 cm

Guide Tube Inner Radius 0.561 cm
Guide Tube Outer Radius 0.602 cm

Instrument Tube Inner Radius 0.559 cm
Instrument Tube Outer Radius 0.605 cm

Outside Rod Height 385.10 cm
Fuel Stack Height (active fuel) 365.76 cm

Plenum Height 16.00 cm
End Plug Heights (x2) 1.67 cm

Pellet Material UO2
Clad / Caps / Guide Tube Material Zircaloy-4

17

CASL-U-2014-0038-000

Figure 2.2: COBRA-TF Problem 6 fuel rod diagram.

Figure 2.3: COBRA-TF Problem 6 assembly layout showing guide tubes and instrument tube
placement.

18

CASL-U-2014-0038-000

Table 2.4: COBRA-TF Problem 6 assembly specification.
Parameter Value Units

Rod Pitch 1.26 cm
Assembly Pitch 21.5 cm

Inter-Assembly Half Gaps 0.04 cm
Geometry 17x17

Number of Fuel Rods 264
Number of Guide Tubes 24

Number of Instrument Tubes 1

Table 2.5: COBRA-TF Problem 6 nominal thermal-hydraulic conditions.
Parameter Value Units

Inlet Temperature 559 degrees F
System Pressure 2250 psia

Rated Flow (100% flow) 0.6824 Mlb/hr
Rated Power (100% power) 17.67 MWt

2.3.3 VUQ Parameters in COBRA-TF Problem 6

At present, CASL VUQ workflows support COBRA-TF simulation parameter variation via two
mechanisms. The first allows Dakota to seamlessly integrate with the VERA Common Input tool
suite to perturb any parameters exposed to a user. The second path targets specific code parameters
in the thermal hydraulics code that represent all physical phenomena modeled with closure laws in
COBRA-TF. These “VUQ parameters” are not exposed to a normal user but are instead exposed
to Dakota using an auxiliary input file. The principle is that most analyst users should only perturb
input data appearing in the VERA text input file, while advanced VUQ users may need to perturb
more advanced parameters such as closure laws. The COBRA-TF studies presented in Chapter 7
use the second mode of parameter variation, i.e. perturbing code parameters via the auxiliary file.

For each parameter, Dakota is able to apply perturbations representing combined shift and
scaling, e.g. for an arbitrary parameter p, Dakota can specify values for kp and kap which are used
as follows:

p̄ = kp ∗ p+ kap (2.5)

The relevant parameters identified by Noel Belcourt and the COBRA-TF code team along with
brief descriptions taken from [32] are summarized in Table 2.6. The entries containing “(??)” in
their description were not documented in [32] but instead were inferred from the COBRA-TF source
code.

19

CASL-U-2014-0038-000

Table 2.6: Relevant COBRA-TF thermal-hydraulic code parameters identified by PIRT study.
cd Pressure loss coefficient of spacer in sub-channel

cdfb Pressure loss coefficient for sub-channel flow blockage (??)

cond Thermal conductivity of radial heat transfer

eta Fraction of vapor generation rate coming from the entrained liquid field

gama New time vapor generation rate in sub-channel

ql∗ Heat transfer rate to liquid in sub-channel

qliht Heat transfer due to drop impact (??)

qradd Radiative heat transfer rate from wall to entrained liquid

qradv Radiative heat transfer rate from wall to vapor

qv∗ Heat transfer rate to liquid in sub-channel

qvapl Incremental heat transferred from grid to vapor (??)

rodqq Externally supplied heat rate of current rod at current time step (axially averaged)

sdent Deposition mass flow rate in sub-channel

sent Entrainment mass flow rate in sub-channel

sphts Specific heat of radial heat transfer

tmasg Loss of mass of non-condensable gas in local axial fluid continuity cell
due to mixing and void drift to radially adjacent fluid cells

tmasl Loss of mass of continuous liquid in local axial fluid continuity cell
due to mixing and void drift to radially adjacent fluid cells

tmasv Loss of mass of vapor in local axial fluid continuity cell
due to mixing and void drift to radially adjacent fluid cells

tmome Loss of momentum of droplets in sub-channel
due to mixing and void drift to radially adjacent fluid cells

tmoml Loss of momentum of continuous liquid in sub-channel
due to mixing and void drift to radially adjacent fluid cells

tmomv Loss of momentum of vapor in sub-channel
due to mixing and void drift to radially adjacent fluid cells

tnrgl Loss of enthalpy of liquid in local axial fluid continuity due to mixing
and void drift to radially adjacent fluid cells

tnrgv Loss of enthalpy of vapor in local axial fluid continuity due to mixing
and void drift to radially adjacent fluid cells

wkr Lateral gap pressure loss coefficient

xk Vertical interfacial drag coefficient between the continuous liquid and vapor phases

xkes Sink interfacial drag coefficient between the liquid and vapor phases

xkge Vertical interfacial drag coefficient between the entrained liquid and vapor phases

xkl Transverse interfacial drag coefficient between the continuous liquid and vapor phases

xkle Transverse interfacial drag coefficient between the entrained liquid and vapor phases

xkvls Sink interfacial drag coefficient between the continuous liquid and vapor phases

xkwew Transverse entrained liquid form loss coefficient

xkwlw Transverse liquid wall drag coefficient

xkwlx Vertical liquid wall drag coefficient

xkwvw Transverse vapor wall drag coefficient

xkwvx Vertical vapor wall drag coefficient

20

CASL-U-2014-0038-000

Chapter 3

Sensitivity Analysis

Broadly, the primary goal of sensitivity analysis is to determine which input parameters most
influence computational model responses, or deterministic quantities of interest. A ranked list of
parameter influences can focus resources for data gathering or model/code development, or can
make calibration, optimization, or uncertainty quantification more tractable over a reduced set of
parameters. In a post-optimization role, sensitivity information is useful is determining whether or
not the response functions are robust with respect to small changes in the optimum design point.
The Dakota sensitivity analysis studies recommended in this chapter have important secondary
benefits as well: (1) they can help identify key model characteristics such as smoothness, nonlinear
trends, and robustness to enable selection of suitable Dakota methods for follow-on studies; and
(2) some yield sampling designs that can be used to construct the surrogate models described in
Chapter 4 for subsequent analyses.

In the CASL context, a phenomena identification and ranking table (PIRT) might help identify
the superset of parameters to consider in a sensitivity analysis study. Then the relative parameter
rankings resulting from a Dakota-driven sensitivity study form the basis of a quantitative PIRT,
or QPRT. These results could also help prioritize model development or data gathering, or identify
insensitive parameters to omit from calibration or UQ studies.

3.1 Terminology

This section introduces key sensitivity analysis terminology and defines the metrics typically used
to assign relative ranks to parameter influences on a response.

3.1.1 Local Versus Global Sensitivity

Dakota primarily focuses on sensitivity analysis in a global sense, i.e., over the whole valid parameter
domain. We contrast that here with more traditional local or partial derivative-based sensitivity
analysis.

Local Sensitivity: In some instances, the term sensitivity analysis is used in a local sense
to denote the computation of response derivatives with respect to parameters at a point. These
local derivatives can then be used to make design decisions or rank parameter influences. Dakota
supports this type of study through numerical finite-differences or retrieval of analytic gradients
computed within the analysis code. The desired gradient data is specified in the responses section

21

CASL-U-2014-0038-000

of the Dakota input file and the collection of this data at a single point is accomplished through a
parameter study method with no steps.

This approach to sensitivity analysis should be distinguished from the activity of augmenting
analysis codes to internally compute derivatives using techniques such as direct or adjoint differen-
tiation, automatic differentiation (e.g., ADIFOR), or complex step modifications. These sensitivity
augmentation activities are completely separate from Dakota and are outside the scope of this man-
ual. However, once completed, Dakota can utilize these analytic gradients to perform optimization,
uncertainty quantification, and related studies more reliably and efficiently. In CASL, some simu-
lation codes such as TSUNAMI have adjoint capabilities and can return not only function value,
but derivative data to Dakota, enhancing analyses.

Global Sensitivity: In other instances, the term sensitivity analysis is used in a more global
sense to denote the investigation of variability in the response functions over the whole valid range
of the input parameters. Dakota supports this type of study through computation of response data
sets at a series of sample design points in the parameter space. The series of points is typically
defined using a parameter study or a design and analysis of computer experiments (DACE) design,
such as orthogonal arrays or space filling Monte Carlo sampling. These more global approaches
to sensitivity analysis can be used to obtain trend data even in situations when gradients are
unavailable, unreliable, or not indicative of global trends.

This chapter offers guidance solely on Dakota’s global sensitivity analysis procedures. Using
them typically consists of:

1. Specifying ranges for each parameter and a sensitivity analysis method in the Dakota input

2. Running Dakota which will:

(a) construct a sampling design in the parameter hypercube;

(b) run the computational model at these points, collecting returned response data; and

(c) calculate and output sensitivity metrics to rank inputs.

3. Post-processing the Dakota-generated parameter/response table with external statistics and
visualization tools to further assess trends and which input factors most strongly influence
the responses

3.1.2 Sensitivity Metrics

Sensitivity metrics output by Dakota are used to assess the relative influence of or rank parameters.
The metrics output vary by Dakota method as discussed in Section 3.2, but may include:

• Correlation coefficients: Dakota prints correlation tables with the simple (Pearson), par-
tial, and rank (Spearman) correlations between inputs and outputs. These are all bounded
between -1 and 1 and measure the strength of the linear relationship between the variables
considered. These can be useful to get a quick sense of how correlated the inputs are to each
other, and how correlated various outputs are to inputs, but can be misleading for detect-
ing nonlinear relationships. For example a model with a perfectly quadratic input/output
relationship centered at zero would have zero correlation hiding the actual strong nonlinear
relationship.

22

CASL-U-2014-0038-000

The simple correlations are Pearson’s correlation coefficient, which is defined for two factors
w and x (where each of these could represent an input or an output) as:

Corr(w, x) =

∑
i(wi − w̄)(xi − x̄)√∑

i(wi − w̄)2
∑

i(xi − x̄)2
.

Partial correlation coefficients are similar, but measure correlation while adjusting for the
effects of other variables. For example, in a problem with two inputs and one output where
the two inputs are highly correlated, the correlation of the second input and the output may
be very low after accounting for the effect of the first input. The rank correlations in Dakota
are obtained using Spearman’s rank correlation. Spearman’s rank is the same as the Pearson
correlation coefficient except that it is calculated on the rank data. Rank correlation can be
more informative when responses vary over orders of magnitude. The correlation analyses are
explained further in the Uncertainty Quantification chapter of the Dakota User’s Manual. [1]

• Morris metrics [25] are computed from “elementary effects” based on a sample design of
large steps around the parameter space. Here each dimension of a M−dimensional input
space is uniformly partitioned into p levels, creating a grid of pM points x ∈ <M at which
evaluations of the model y(x) might take place. An elementary effect corresponding to input
i is computed by a forward difference

di(x) =
y(x+ ∆ei)− y(x)

∆
, (3.1)

where ei is the ith coordinate vector, and the step ∆ is typically taken to be large (this is not
intended to be a local derivative approximation), e.g., for an input variable scaled to [0, 1],
∆ = p

2(p−1) , so the step used to find elementary effects is slightly larger than half the input
range.

The distribution of elementary effects di over the input space characterizes the effect of input
i on the output of interest. After generating N samples from this distribution, their mean,

µi =
1

N

N∑
j=1

d
(j)
i , (3.2)

modified mean

µ∗i =
1

N

N∑
j=1

|d(j)
i |, (3.3)

(using absolute value) and standard deviation

σi =

√√√√ 1

N − 1

N∑
j=1

(
d

(j)
i − µi

)2
(3.4)

are computed for each input i. The mean and modified mean give an indication of the overall
effect of an input on the output. Standard deviation indicates nonlinear effects or interactions,
since it is an indicator of elementary effects varying throughout the input space.

23

CASL-U-2014-0038-000

• Sobol indices: Dakota can calculate sensitivity indices through Variance-based Decompo-
sition (VBD). Variance-based decomposition is a global sensitivity method that summarizes
how the uncertainty in model output can be apportioned to uncertainty in individual input
variables. VBD uses two primary measures, the main effect sensitivity index Si and the total
effect sensitivity index Ti. The main effect sensitivity index corresponds to the fraction of
the total uncertainty in the output, Y , that can be attributed to input xi alone. The total
effect sensitivity index corresponds to the fraction of the total uncertainty in the output,
Y , that can be attributed to input xi and its interactions with other variables. The main
effect sensitivity index compares the variance of the conditional expectation V arXi [E(Y |Xi)]
against the total variance V ar(Y).

Formulas for the indices are:

Si =
V arXi [E(Y |Xi)]

V ar(Y)
(3.5)

and

Ti =
EX−i [V ar(Y |X−i)]

V ar(Y)
=
V ar(Y)− V arX−i [E(Y |X−i)]

V ar(Y)
(3.6)

where Y = f(x) and x−i = (x1, ..., xi−1, xi+1, ..., xM). The calculation of Si and Ti requires
the evaluation of M -dimensional integrals which are typically approximated by Monte-Carlo
sampling.

When using VBD, a rough guide is that variables with main effect indices greater than
100/M% are significant as they can be considered to have greater than average effect on
output variability, barring higher-order interactions. More details on the calculations and
interpretation of the sensitivity indices can be found in [33].

• Main effects show the effects of a single variable, averaging across the effect of other input
variables. For a full factorial design with each of M inputs taking on p levels, the main effect
of input variable xi is calculated at each level k = 1, ..., p it takes on as

mk
i =

1

pM−1

∑
x

y(x|xi = xki).

To calculate main effects with Dakota, one can either use (1) the orthogonal array method
from DDACE with the supplementary command main effects, or (2) a grid parameter study,
which has to be post-processed to compute main effects in an external statistics tool.

Supplementary Approaches: Running any of the parameter study, design of experiments,
or sampling methods allows the user to save the results in a tabular data file, which then can be
read into a spreadsheet or statistical package for further analysis. One example of this is the well-
known technique of scatter plots, in which the set of samples is projected down and plotted against
one parameter dimension, for each parameter in turn. Scatter plots with a uniformly distributed
cloud of points indicate parameters with little influence on the results, whereas scatter plots with
a defined shape to the cloud indicate parameters which are more significant. Related techniques
include analysis of variance (ANOVA) [27] and main effects analysis, in which parameters having
the greatest influence on the output are identified from sampling results. Scatter plots and ANOVA
may be accessed through import of Dakota tabular results into external statistical analysis programs
such as R (http://www.r-project.org) and Minitab (http://www.minitab.com).

24

CASL-U-2014-0038-000

http://www.r-project.org
http://www.minitab.com

3.2 Recommended Methods

This section summarizes a few recommended Dakota sensitivity analysis methods at a high level,
shows input file examples, resulting output, and post-processing/visualization approaches that can
help. The choice of method will depend on the analysis goal and available computational budget.
We begin with high-level best practices before delving into examples of specific methods.

We almost always recommend starting with simple centered parameter studies that yield
univariate effects only. Do this first with small perturbations, then large variations that span the
parameter space. These simple studies test the model interface, assess the relative smoothness of
the response, and assess model robustness over single parameter variations. These studies readily
determine the effect of a single parameter in a practical way, as they are automated versions of
typical “perturb ±5%, ±10%” studies that analysts manually conduct.

The type of follow-on sensitivity study to conduct depends on simulation budget and goal. The
cost for various methods is shown in Table 3.1, together with the key metrics that they yield. Here
M is the number of input parameters studied, p a user-specified number of increments or partitions
in each variable (often taken to be p = 3), N a total number of samples in a single Latin hypercube
sampling (LHS) replicate, and k a number of replicates (often k = 4) which may be needed to
evaluate the formulas for Sobol indices from Section 3.1.2.

Table 3.1: Key sensitivity analysis methods with the metrics they produce, roughly ordered by
increasing computational cost. M : number of parameters, p: increments per variables, N : total
samples in a single replicate, k: number of replicates.

method design points metrics

centered parameter study (Sec. 3.2.1) p×M + 1 univariate effects
global LHS sampling (Sec. 3.2.3) N = 2×M to 10×M Pearson, partial,

Spearman correlations
PSUADE/Morris (Sec. 3.2.4) k × (M + 1), with p odd elementary effects
VBD/Sobol (none) N × (M + 2) Sobol main/total effects
full factorial/grid (Sec. 3.2.2) pM correlations, main effects

A global LHS sampling study is the most common follow-on study, ideally with N = 10×M ,
but possibly as few as N = 2 ×M , samples. Global LHS sampling has the benefit of reuse of the
sample points for follow-on surrogate construction. Dakota directly outputs correlation coefficients,
which when large can indicate parameters surely influencing the response; useful for inclusion-based
screening. It also yields data for constructing scatter plots in post-processing analysis. Parameter
effects can be confounded, so it can be hard to extract univariate effects, but one can get a good
idea of the effect of joint variation with modest samples.

If point reuse or scatter plot diagnostics are not a primary consideration, PSUADE/Morris
designs offer more inference power, with a similar cost, to LHS designs by facilitating quantitative
detection of nonlinear or interaction effects in addition to main effects.

Variance-based decomposition (VBD/Sobol) analysis can offer even more information.
This uses replicate LHS or a surrogate (possibly stochastic polynomial approximations as described
in Section 6.1.2) to perform a variance-based decomposition that apportions output variance to
input factors. The resulting Sobol indices for main and total effects (described in Section 3.1.2)
can be helpful for up front sensitivity analysis, when an “80/20” principle applies: fewer than 20

25

CASL-U-2014-0038-000

percent of the parameters explain at least 80 percent of total output variance. In this case, one
can quickly screen with relatively few model runs. However, this approach is challenging in the
presence of strong interactions, due to the potentially substantial data requirements for accurate
inference of Sobol indices. Strong interactions are suggested by differences in partial versus simple
correlations or main versus total effects in Sobol indices.

For modest numbers of parameters and reasonable model run cost, one can conduct full facto-
rial parameter studies with Dakota’s grid/multidimensional parameter study or fractional factorial
orthogonal array (OA) designs with DACE OA. These can assess main effects of each parameter,
even when considering them jointly. A two-level Plackett-Burman design can be good for extremely
slow codes, where the number of runs (N = M + 1) is severely limited. However these methods are
not currently available in Dakota.

3.2.1 Centered Parameter Study

The centered parameter study executes multiple coordinate-based parameter studies, one per pa-
rameter, centered about the specified initial values. This is useful for investigation of function
contours in the vicinity of a specific point and is a very common model exploration technique
where each parameter is increased and decreased by a fixed increment. A set of widely-spaced
points in a centered or multidimensional parameter study could be used to determine whether the
response function variation is likely to be unimodal or multimodal. A set of closely-spaced points
in a centered parameter study could also be used to assess the smoothness of the response functions
in order to select a suitable finite difference step size for optimization/calibration (see an example
of their use in Listing 5.1 in Section 5.2.1). After computing an optimum design, a parameter study
could also be used for post-optimality analysis in verifying that the computed solution is actually
at a minimum or constraint boundary and in investigating the shape of this minimum or constraint
boundary. (In a parameter study, one may optionally enable Dakota’s numerical gradient estima-
tion to calculate local derivative values at each point in the parameter space, but the results are
only published to the Dakota console text output, not the tabular data file.)

Dakota Input: This method requires two settings: (1) step vector, a list of real values,
each of which specifies the size of the increment or perturbation for a single variable; and (2)
steps per variable, a list of integers that specifies the number of increments pi per variable in
each of the positive and negative coordinate directions. Centered parameter studies are typically
conducted with pi = 5 positive and negative increments of each parameter. The total number of
samples required is N = 1 +

∑M
i=1 2pi. step vector specifies absolute variable steps for continuous

and discrete range variables, but for studies conducted over integer or real discrete set variables (see
“Design Variables” in the Dakota Reference Manual [2]), specifies perturbations in index offsets to
select from the possible set values. For example, with initial values of (1.0, 1.0), a step vector

of (0.1, 0.1), and a steps per variable of (2, 2), the center point is evaluated followed by four
function evaluations (two negative deltas and two positive deltas) per variable. This set of points
in parameter space is shown in Dakota screen output in Figure 3.1 and graphically in Figure 3.2.

Dakota Input for Cantilever: A sample Dakota input file for a centered parameter study
with the cantilever beam application is shown in Listing 3.1. Note the previously discussed method
controls for centered parameter study in lines 8–10, that all the variables are active (line 18),
and that the evaluations will be saved to the tabular data file specified on line 4. The centered
study is fully characterized by the initial values and steps for the variables (lines 21 and 25, 10 and
11).

26

CASL-U-2014-0038-000

Parameters for function evaluation 1:

1.0000000000e+00 d1

1.0000000000e+00 d2

Parameters for function evaluation 2:

8.0000000000e-01 d1

1.0000000000e+00 d2

Parameters for function evaluation 3:

9.0000000000e-01 d1

1.0000000000e+00 d2

Parameters for function evaluation 4:

1.1000000000e+00 d1

1.0000000000e+00 d2

Parameters for function evaluation 5:

1.2000000000e+00 d1

1.0000000000e+00 d2

Parameters for function evaluation 6:

1.0000000000e+00 d1

8.0000000000e-01 d2

Parameters for function evaluation 7:

1.0000000000e+00 d1

9.0000000000e-01 d2

Parameters for function evaluation 8:

1.0000000000e+00 d1

1.1000000000e+00 d2

Parameters for function evaluation 9:

1.0000000000e+00 d1

1.2000000000e+00 d2

Figure 3.1: Dakota output showing function evaluations for a centered parameter study with two
positive and two negative steps per variable.

Figure 3.2: Notional example of centered parameter study over two parameters d1 and d2.

27

CASL-U-2014-0038-000

Results and Discussion: The results of the study are depicted in Figure 3.3, where the
tabular data generated by Dakota (cantilever centered.dat) has been plotted with Matlab.
These plots show that only w and t affect area /weight (the plots for these two variables overlay
each other). For the stress and displacement, w and t have the strongest effect, and possibly a
nonlinear one as evidence by the curvature in their traces. E and X have a small, but nonzero
effect. All input/output relationships appear smooth (no noise or other oscillation is evident).
These observations can be verified by studying the equations for the static cantilever problem.

Listing 3.1: Dakota input file showing centered parameter study on the cantilever beam problem.

1 strategy ,

single_method

3 tabular_graphics_data

tabular_graphics_file ’cantilever_centered.dat ’

5

method ,

7

do a parameter study in coordinate directions over all 6 parameters

9 centered_parameter_study

step_vector 0.1 0.1 10 100 10 100

11 steps_per_variable 2

13 variables ,

15 # by default , a parameter study won ’t operate on state parameters

can change that default behavior be explicitly specifying which

17 # parameters to use (here "all")

active all

19

continuous_design = 2

21 initial_point 1.0 1.0

descriptors ’w’ ’t’

23

continuous_state = 4

25 initial_state 40000. 29.E+6 500. 1000.

descriptors ’R’ ’E’ ’X’ ’Y’

27

interface ,

29 direct

analysis_driver = ’mod_cantilever ’

31

responses ,

33 num_objective_functions = 3

response_descriptors = ’area ’ ’stress ’ ’displacement ’

35 no_gradients

no_hessians

3.2.2 Multidimensional Parameter Study

The multidimensional parameter study computes response data sets for an M -dimensional hyper-
grid of input points. This full factorial design is powerful in determining main effects and potential
interactions among parameters, but the number of simulation runs quickly becomes prohibitive as

28

CASL-U-2014-0038-000

−2 −1 0 1 2
0.8

0.9

1

1.1

1.2

1.3

w
ei

g
h

t

−2 −1 0 1 2
0.6

0.8

1

1.2

1.4
x 10

6

st
re

ss

w
t
R
E
X
Y

−2 −1 0 1 2
50

100

150

200

250

300

d
is

p
l

param step

Figure 3.3: Cantilever beam: univariate effects from centered parameter study of each of six pa-
rameters on each of three responses.

the dimension of the parameter space M increases. It is presented here mainly because it’s easily
understandable and tractable/useful for small dimensional problems.

For these studies, each variable is partitioned into equally spaced intervals between its upper
and lower bounds, and each combination of the values defined by these partitions is evaluated. The

29

CASL-U-2014-0038-000

number of function evaluations performed in the study is:

M∏
i=1

(partitionsi + 1) (3.7)

Dakota Input Example: The partitions information is provided using the partitions speci-
fication, which inputs an integer list of the number of partitions for each variable (i.e., partitionsi).
Since the initial values will not be used, they need not be specified.

In a two variable example problem with d1 ∈ [0,2] and d2 ∈ [0,3] (as defined by the upper
and lower bounds from the variables specification) and with partitions = (2,3), the interval [0,2]
is divided into two equal-sized partitions and the interval [0,3] is divided into three equal-sized
partitions. This two-dimensional grid, shown notionally in Figure 3.4, would result in the twelve
function evaluations shown in Figure 3.5. See the first example in the Dakota User’s Manual [1]:
Tutorial for additional notes to understand this study.

Figure 3.4: Example of multidimensional parameter study.

Dakota Input for Cantilever: Listing 3.2 shows a Dakota input file prescribing a multidi-
mensional parameter study for the cantilever beam problem. On line 10, 9 partitions are specified
for w and 6 for t, resulting in 10× 7 = 70 total model evaluations in the (w, t) space. The parame-
ters R,E,X, and Y are held at nominal values using Dakota’s state variable mechanism, as active
all is commented on line 16. In contrast to the centered parameter study, the active variables are
characterized by their lower and upper bounds (lines 19–20).

Results and Discussion: When resources allow a grid parameter study to be conducted,
one resulting advantage is that main effects can be calculated. An example is shown in Fig-
ure 3.6. In this example, the main effects for w and t are generated by post-processing Dakota’s
cantilever grid.dat file using external statistical and plotting software. The left subplot shows
the main effect of w, that is the relationship between w and the mean of the displacement, taken
over all realization of the other variable t. We observe a smooth, nonlinear effect. Similar is true
for the main effect of t in the right subplot.

30

CASL-U-2014-0038-000

Listing 3.2: Dakota input file showing grid parameter study on the cantilever beam problem.

strategy ,

2 single_method

tabular_graphics_data

4 tabular_graphics_file ’cantilever_grid.dat ’

6 method ,

8 # conduct grid parameter study with 10 values for width , 7 for thickness

multidim_parameter_study

10 partitions = 9 6

12 variables ,

14 # default is to perform the study over the design variables , leaving

state fixed; could override to do all variables with:

16 ## active all

18 continuous_design = 2

lower_bounds 1.0 1.0

20 upper_bounds 4.0 4.0

descriptors ’w’ ’t’

22

continuous_state = 4

24 initial_state 40000. 29.E+6 500. 1000.

descriptors ’R’ ’E’ ’X’ ’Y’

26

interface ,

28 direct

analysis_driver = ’mod_cantilever ’

30

responses ,

32 num_objective_functions = 3

response_descriptors = ’area ’ ’stress ’ ’displacement ’

34 no_gradients

no_hessians

31

CASL-U-2014-0038-000

Parameters for function evaluation 1:

0.0000000000e+00 d1

0.0000000000e+00 d2

Parameters for function evaluation 2:

1.0000000000e+00 d1

0.0000000000e+00 d2

Parameters for function evaluation 3:

2.0000000000e+00 d1

0.0000000000e+00 d2

Parameters for function evaluation 4:

0.0000000000e+00 d1

1.0000000000e+00 d2

Parameters for function evaluation 5:

1.0000000000e+00 d1

1.0000000000e+00 d2

Parameters for function evaluation 6:

2.0000000000e+00 d1

1.0000000000e+00 d2

Parameters for function evaluation 7:

0.0000000000e+00 d1

2.0000000000e+00 d2

Parameters for function evaluation 8:

1.0000000000e+00 d1

2.0000000000e+00 d2

Parameters for function evaluation 9:

2.0000000000e+00 d1

2.0000000000e+00 d2

Parameters for function evaluation 10:

0.0000000000e+00 d1

3.0000000000e+00 d2

Parameters for function evaluation 11:

1.0000000000e+00 d1

3.0000000000e+00 d2

Parameters for function evaluation 12:

2.0000000000e+00 d1

3.0000000000e+00 d2

Figure 3.5: Dakota output function evaluations for a grid parameter study, the tensor product of
three steps in d1 with four steps in d2.

The plot shown here was generated using Minitab statistical software, but SAS (http://www.
sas.com), JMP (www.jmp.com), R (http://www.r-project.org), Minitab (http://www.minitab.
com), Matlab (http://www.mathworks.com/products/matlab), and other tools can produce sim-
ilar graphics. Therefore we recommend CASL analysts use the tools present in the computing
environment at their institution. Grid parameter studies also output correlation coefficients, dis-
cussed at greater length in the next section.

32

CASL-U-2014-0038-000

http://www.sas.com
http://www.sas.com
www.jmp.com
http://www.r-project.org
http://www.minitab.com
http://www.minitab.com
http://www.mathworks.com/products/matlab

Figure 3.6: Cantilever beam: Minitab-generated main effects for w and t from grid study.

3.2.3 Global LHS Sampling

Monte Carlo sampling methods including Latin hypercube sampling (LHS) are discussed in more
detail in Chapter 6, Uncertainty Quantification. For sensitivity analysis with global sampling,
variables are typically taken to be uniform on their support. Dakota will generate a space-filling
sample design (shotgun blast of points into the M -dimensional parameter space). It will then run
the model at these points, and analyze the resulting response data. Here we use a Latin hypercube
design for consistency with the UQ recommendations. Latin hypercube designs have better space
filling properties and 1-D projections They will converge statistics at a faster rate than simple
Monte Carlo designs.

Dakota Input for Cantilever: A Dakota input file example for conducting a sampling-based
study on the cantilever beam is displayed in Listing 3.3. It generates a Latin hypercube design
with 100 sample points (lines 11–12) in the six-dimensional parameter space. Note lines 35–38,
where the variables are characterized using uniform probability distributions. While not strictly
necessary (bounded design variables can work too), this illustrates that Monte Carlo sampling
can work with arbitrary probability distributions when needed. The seed on line 29 is specified
for study repeatability. If the seed is omitted, Dakota will choose one at random, resulting in a
different random design. This can be used to generate replicates to assess variability the statistics.
Figure 3.7 shows sets of 2-D projections of one Dakota-generated sampling design.

Results and Discussion: When performing Monte Carlo sampling, Dakota outputs corre-
lations, including the partial correlations shown in the screen output in Figure 3.8. As discussed
previously in Section 3.1.2, correlations often give a good quick read on the overall input/output
correlation as shown here. Values near 1 indicate strong positive correlation, -1 negative correlation,
0 no correlation. For sensitivity analysis we typically rely on partial correlations as they control
for the effect of other variables to provide a more reliable ranking mechanism.

One can visualize the correlation coefficients with external software to more easily see the relative
impact. For large numbers of parameters, it is helpful to plot the relative magnitudes (Figure 3.9) or
color code with conditional formatting in Excel (Figure 3.10) to more readily differentiate the small
from large correlations. Typically, correlations greater than 0.5 in magnitude indicate potentially

33

CASL-U-2014-0038-000

Listing 3.3: Dakota input file showing global sampling on the cantilever beam problem.

1 strategy ,

single_method

3 tabular_graphics_data

tabular_graphics_file ’cantilever_sa.dat ’

5

method ,

7

do a sampling -based sensitivity study , optionally with

9 # variance -based decomposition to get higher order sensitivities

sampling

11 sample_type lhs

samples = 100

13 # variance_based_decomp

15 # do a design -of -experiments -based sensitivity using ANOVA to compute

the sensitivities

17 # dace oas

main_effects

19 # samples = 100

21 # do a Morris One -At -A-Time sensitivity study

psuade_moat

23 # must be odd

partitions = 3

25 # must be integer multiple of (num_vars + 1)

samples = 98

27

need these for all methods; seed allows for repeatability

29 seed = 52983

31 variables ,

33 # By default DACE and Sampling methods sample over all variables

35 uniform_uncertain = 6

upper_bounds 48000. 45.E+6 700. 1200. 2.2 2.2

37 lower_bounds 32000. 15.E+6 300. 800. 2.0 2.0

descriptors ’R’ ’E’ ’X’ ’Y’ ’w’ ’t’

39

interface ,

41 direct

analysis_driver = ’mod_cantilever ’

43

responses ,

45 num_response_functions = 3

response_descriptors = ’weight ’ ’stress ’ ’displ ’

47 no_gradients

no_hessians

34

CASL-U-2014-0038-000

2 2.1 2.2
t

2 2.1 2.2
w

800 1000 1200
Y

400 600
X

2 3 4

x 10
7E

3.5 4 4.5

x 10
4

2

2.1

2.2

R

t

2

2.1

2.2

w

800

1000

1200

Y

300

400

500

600

700
X

2

3

4

x 10
7

E

3.5

4

4.5

x 10
4

R

Figure 3.7: Latin hypercube design example: 2-D projections showing locations in the parameter
space of 100 Monte Carlo samples using uniform distributions for all six parameters.

Partial Correlation Matrix between input and output:

weight stress displ

R 1.36556e-01 -9.89955e-01 -5.82547e-02

E -2.59807e-02 1.51530e-02 -9.53598e-01

X -8.58158e-03 9.96167e-01 3.12725e-01

Y 5.15226e-02 9.96214e-01 7.35493e-01

w 9.99659e-01 -9.84197e-01 -4.20681e-01

t 9.99659e-01 -9.89246e-01 -5.24940e-01

Figure 3.8: Dakota output showing partial correlations for the cantilever beam problem.

significant input/output relationships (though specific guidance and interpretation depends on the
number of samples, number of variables, and analysis tolerance). Values less than 0.5 should be
more carefully studied for possible confounding factors or nonlinearities before discounting their
importance.

As correlation coefficients are a linear measure of input/output relationship, it is critical to
visualize scatter plots to check for nonlinear trends. Figure 3.11 shows scatter plots generated
in Matlab, together with linear regression fits to the data. Some of the scatter plots exhibit
nonlinear input/output trends in the cloud of data, for example the plots of E versus displ shows

35

CASL-U-2014-0038-000

−1 −0.5 0 0.5 1

R
E
X
Y
w
t

Partial correlation for displ

Figure 3.9: Cantilever beam: partial correlation between displacement and inputs.

Partial Correlations for Cantilever

weight stress displ

R 0.14 -0.99 -0.06

E -0.03 0.02 -0.95

X -0.01 1.00 0.31

Y 0.05 1.00 0.74

w 1.00 -0.98 -0.42

t 1.00 -0.99 -0.52

Figure 3.10: Cantilever beam: partial correlation between displacement and inputs, conditionally
formatted with Microsoft Excel.

some curvature. Overall, however, the correlations are a good representative indicator of the most
important factors for these sample data.

Monte Carlo / LHS sampling for sensitivity analysis screening is typically conducted with
number of samples equal to 10 times the number of variables, but budgets often push this down
to a factor of two. Also, global Gaussian process models built in Dakota are typically constructed
based on a Latin hypercube design. Guidance on the number of samples for constructing such
surrogates is provided in Chapter 4.

3.2.4 PSUADE/Morris Method

The Morris One-At-a-Time method, originally proposed by M. D. Morris [25], is a screening method,
designed to explore a computational model to distinguish between input variables that have negligi-
ble, linear and additive, or nonlinear/interaction effects on the output. The computer experiments
performed consist of individually randomized designs which vary one input factor at a time to cre-
ate a sample of its elementary effects. A more extensive discussion of the method and its metrics
can be found in the “Design of Experiments Capabilities” chapter of the Dakota User’s Manual [1].

The file examples/SensitivityAnalysis/cantilever morris.in shows an alternate Dakota

36

CASL-U-2014-0038-000

2.05 2.1 2.15
t

2.05 2.1 2.15
w

900 10001100
Y

400 500 600
X

2 3 4

x 10
7E

3.5 4 4.5

x 10
4

5

10

15

R

d
is

p
l

4

5

6

7

8

9
x 10

4

st
re

ss

4.2

4.4

4.6
w

ei
g

h
t

Figure 3.11: Cantilever beam: input/output scatter plots with correlations.

method specification for conducting a Morris screening experiment, resulting in the Morris modified
mean and standard deviation of elementary effects, defined above in Section 3.1.2. This method
often gives good insight for modest simulation budget. The changed input fragment is:

psuade_moat

must be odd

partitions = 3

must be integer multiple of (num_vars + 1)

samples = 98

In Figure 3.12, the Dakota screen output has been imported into Matlab to plot the modified
mean µ∗ vs. standard deviation σ of the elementary effects. One can readily observe that for
weight, w and t have a strong main effect as expected, and a small nonzero interaction effect.
Other variables have no influence. For stress, R has a strong main/linear effect, X and Y have
a stronger main effect than w and t, yet w and t have a stronger interaction effect. These are
also evident from the cantilever equations. The displacement shows strong main and interaction
dependence on E, weaker influence of w, t,X, Y, and no influence of R. This is likely an artifact
of the magnitude of E, which is swamping the analysis, and emphasizes the importance of careful
input scaling.

37

CASL-U-2014-0038-000

0 0.5 1
0

0.005

0.01

0.015

0.02

main effect (µ*)

in
te

ra
ct

io
n

 e
ff

ec
t

(σ
)

RE
XY

w
t

weight

0 1 2 3

x 10
4

0

1000

2000

3000

4000

main effect (µ*)

RE

X
Y

w t

stress

0 5 10 15
0

1

2

3

4

5

main effect (µ*)

R

E

X
Y

w

t

displ

Figure 3.12: Cantilever beam: Morris elementary effects: modified mean (µ∗) and standard devia-
tion (σ).

3.3 Summary and Additional Approaches

Parameter studies, design/analysis of computer experiments (DACE), and general sampling meth-
ods share the purpose of exploring the parameter space for sensitivity analysis. When a global
space-filling set of samples is desired, then the design of experiments (DOE), DACE, and sampling
methods are recommended, with the particular choice depending on computational cost. These
techniques are useful for scatter plot and variance analysis as well as surrogate model construction.

We draw a distinction between DOE and DACE methods. DOE are intended for physical exper-
iments containing an element of stochasticity (and therefore tend to place samples at the extreme
parameter vertices), whereas the latter are intended for deterministic computer experiments and
are more space-filling in nature. Another distinction between DOE/DACE and sampling is drawn
based on the distributions of the parameters. DOE/DACE methods typically assume uniform
distributions, whereas the sampling (and other uncertainty quantification) approaches in Dakota
support a broad range of probability distributions.

Sensitivity analysis method selection recommendations for a broader array of Dakota methods
are summarized in Table 3.2. Here are a few highlights to supplement the core recommendations
above:

• The vector and list parameter study methods not described here are summarized in the
“Parameter Study Capabilities” chapter of the Dakota User’s Manual [1]. List parameter
studies run the model at user-specified design points.

• The file cantilever sa.in also demonstrates the use of DACE orthogonal array (lines 17–
19) designs with minor changes to the input file. These output other helpful measures of
sensitivity described in the “DACE Capabilities” chapter of the Dakota User’s Manual [1].

• When implemented using replicate samples (specifying method, sampling, variance based decomp

in the Dakota input), variance-based decomposition can require a prohibitive number of model
runs. Surrogates such as Gaussian process models (see Section 4.2) are often used to mitigate
this cost. Another advanced approach is to use polynomial chaos expansions (Section 6.1.2)
which also produce Sobol indices. One may use a structured PCE design generated by Dakota,

38

CASL-U-2014-0038-000

or import the points from a previous Monte Carlo sample to build the PCE and quickly cal-
culate the variance-based decomposition.

• Other design types may be more appropriate for polynomial regression such as Box-Behnken [7]
or central composite design [8] for quadratic polynomials.

Table 3.2: Guidelines for selection of parameter study, DOE, DACE, and sampling methods.

Method Applications Applicable Methods
Classification

parameter study sensitivity analysis, centered parameter study,
directed parameter space list parameter study,

investigations multidim parameter study,
vector parameter study

classical design physical experiments dace (box behnken,
of experiments (parameters uniformly distributed) central composite)

design of variance analysis, dace (grid, random, oas, lhs, oa lhs),
computer space filling designs fsu quasi mc (halton, hammersley),

experiments (parameters uniformly distributed) fsu cvt, psuade moat

sampling space filling designs sampling (Monte Carlo, LHS)
(parameters have with optional

general probability distributions) active view override

39

CASL-U-2014-0038-000

Chapter 4

Surrogate Models

This chapter introduces the basic theory and use of Dakota’s polynomial regression and kriging
surrogate models. Surrogate models are typically employed to provide computationally efficient
approximate representations of trends and residual (error) processes in physical data or code output.
The terms “emulator,” “response surface,” and “meta-model” refer to the generation of surrogate
predictions with associated uncertainty quantification. In the Dakota context, surrogate models are
automatically generated based on empirical samples of the true simulation model’s input/output
relationship. This type of surrogate can be constrasted with physics-based surrogates which make
simplifying assumptions to create a simpler, faster running simulation model.

In the following, Y (x) denotes a surrogate for the physical or computational response of in-
terest f(x), µ̃(x) denotes the prediction of Y (x) evaluated at the input x (emulator mean), and
σ̃(x) denotes the standard error of prediction evaluated at the input x (emulator standard error).
Emulators are constructed from physical data or code output collected on a sample design of N
runs in M input dimensions. Good practice requires the run size N to be at least as large as the
number of surrogate model parameters requiring estimation (degrees of freedom). Dakota enforces
this practice by exiting and returning an error message if N is too small. The degrees of freedom
(and thus minimum N) will be stated for each surrogate model introduced in the ensuing sections.

The surrogate models considered in this chapter assume the distribution of residuals (difference
between experimental or code output and emulator prediction) is modeled as mean-zero Gaussian.
Diagnostics such as a normal probability plot of standardized emulator residuals can be used to
check this assumption, as illustrated in Section 7.3.2. Under the assumption of Gaussian residuals,
outputs used to construct emulators will then follow a multivariate Gaussian distribution, assuming
all unknown surrogate model parameters are fixed. The likelihood of observing the given outputs
for any given value of the surrogate model parameters is the associated value of this multivariate
Gaussian density function. In this chapter, most surrogate model parameters are estimated by
maximum likelihood in Dakota, by finding a value for these parameters that maximizes the likeli-
hood function. This value is referred to as the maximum likelihood estimate (MLE). Parameter
estimation via MLE differs from the Bayesian approach to parameter inference discussed in Un-
certainty Quantification, Chapter 6, in that the latter results in a probability distribution for the
surrogate model parameters. In practice, the contribution to overall emulator uncertainty induced
by surrogate model parameter uncertainty from Bayesian inference is often small compared with
the uncertainty arising from the residual error process itself. Computations in Dakota involving
surrogate model indirection can thus be sped up considerably by utilizing a point estimate (the

40

CASL-U-2014-0038-000

MLE) in place of a probability distribution for the surrogate model parameters.
Section 4.1 considers polynomial surrogates, which are typically used to model observed trends

in data from physical experiments resulting from perturbing input parameters that describe physical
scenarios of interest. Polynomial surrogates model these trends as a regression relationship that
is linear in the unknown coefficients (but not necessarily in the inputs themselves). Experimental
errors are assumed to be independently distributed as mean-zero Gaussian distributions having
common variance. Polynomial surrogates smooth the observed data by finding the best-fitting
trend model of those in the class specified by the user.

Section 4.2 considers kriging surrogates, which are typically used to model observed trends in
outputs from computationally intensive code runs resulting from input parameter perturbations.
In this setting, input parameters describe physical scenarios of interest as well as uncertain ini-
tial or boundary conditions, or possibly uncertain closure model parameters that are calibrated to
experimental data (see Optimization and Deterministic Calibration, Chapter 5 and Uncertainty
Quantification, Chapter 6). Assuming the quantities of interest vary smoothly with input pertur-
bations, the information available from a small number of code runs can be used effectively by
the kriging surrogate to infer a correlated error structure. The kriging surrogate is thus able to
borrow strength from the small set of code runs conducted to quickly predict code output at user
specified input settings with quantified uncertainty. Code runs “closer” to a desired prediction
site are weighted more heavily in constructing the kriging emulator than those further away with
respect to the inferred correlation structure.

Typically, kriging surrogates interpolate the set of code runs made for the purpose of inferring the
surrogate model parameters. That is, emulator predictions at input sites corresponding to available
code runs are equal to the calculated code outputs with zero uncertainty. This interpolation
property is often desirable for emulating deterministic codes that produce a single output value
over repeated runs at the same input point. However, as described in Section 4.2 it is possible to
relax this interpolation property when fitting a kriging model. This option is useful for leveraging
the flexibility of kriging surrogates to model data from physical experiments (e.g. if polynomial
surrogates do not provide an adequate fit), or to model output from stochastic codes or deterministic
codes subject to numerical or high frequency noise.

As described in the ensuing sections, diagnostics are available to assess the predictive capability
of a chosen surrogate model. We synthesize the discussion above to make the following recommen-
dations on the initial choice of surrogate model. Polynomial surrogates are often employed to model
outputs from physical experiments. Polynomial or kriging surrogates may be utilized to model code
output. Polynomial surrogates are appropriate when very few input parameters are being varied
or prior knowledge indicates the trend contains minimal contribution from input nonlinearity and
interaction. Subject to these considerations regarding trend complexity, polynomial surrogates are
particularly appropriate for modeling stochastic or noisy code outputs. Kriging surrogates are
ideal for settings in which weak or nonexistant prior information exists about trend complexity.
They are often able to successfully infer the trend from a modest set of training runs, yielding an
advantage over the effort often required to successfully fit a suitable polynomial surrogate in the
presence of little or no prior information about trends. Kriging surrogates are also capable of fit-
ting nonlinear trends not easily represented by low order polynomial surrogates. For deterministic
codes, the uncertainty quantification provided by kriging surrogates conforms to the notion that
prediction uncertainty should diminish near input points at which training runs were conducted.
This behavior does not occur with polynomial surrogates.

41

CASL-U-2014-0038-000

4.1 Polynomial Regression Models

Linear, quadratic, and cubic polynomial surrogate models are available in Dakota. The form of the
linear polynomial model is

Y (x) = β0 +
M∑
i=1

βixi + ε(x) ;

the form of the quadratic polynomial model is

Y (x) = β0 +
M∑
i=1

βixi +
M∑
i=1

M∑
j≥i

βijxixj + ε(x) ;

and the form of the cubic polynomial model is

Y (x) = β0 +
M∑
i=1

βixi +
M∑
i=1

M∑
j≥i

βijxixj +
M∑
i=1

M∑
j≥i

M∑
k≥j

βijkxixjxk + ε(x) .

In all of the polynomial models, Y (x) is the response of the polynomial model plus a mean-zero
Gaussian error model (ε(x)); the xi, xj , xk terms are the components of the M -dimensional input
parameter values; and the β0, βi, βij , and βijk terms are the polynomial coefficients. The number
of coefficients, Nβ, depends on the order of the polynomial model. For the linear polynomial,
Nβ = M + 1; for the quadratic polynomial, Nβ = (M + 1)(M + 2)/2; and for the cubic polynomial,
Nβ = (M3 + 6M2 + 11M + 6)/6. The errors ε(·) associated with each output are assumed to be
independently distributed and have constant variance σ2.

There must be at least Nβ data samples (i.e. N ≥ Nβ) in order to form a fully determined
linear system and solve for the polynomial coefficients β. In most applications, the linear system
will be overdetermined (i.e. N > Nβ). To solve such systems, Dakota employs a least-squares
approach involving a QR factorization-based numerical method. Note that N ≥ Nβ + 1 is required
to estimate both β and the error variance σ2.

The maximum likelihood value of β is computed via ordinary least squares,

β̂ =
(
GTG

)−1
GT y .

Here y is the N -vector of observed experimental data and G is a N by Nβ matrix that contains
evaluations of the polynomial basis functions at all runs in the N by M sample design X, Gij =
gj
(
XT
i

)
, i = 1, . . . , N ; j = 1, . . . , Nβ.

The emulator mean µ̃(x) evaluated at input x is a best linear unbiased predictor of the surrogate
Y (x),

µ̃(x) = gT (x)β̂ .

The emulator variance σ̃2(x) (here, the mean squared error of prediction) evaluated at input x
provides a spatially varying measure of prediction uncertainty,

σ̃2(x) = σ̂2
(

1 + gT (x)
(
GTG

)−1
g(x)

)
,

where an unbiased estimate of σ2 is

σ̂2 =

(
y −Gβ̂

)T (
y −Gβ̂

)
N −Nβ

.

42

CASL-U-2014-0038-000

The utility of the polynomial models stems from two sources: (1) over a small portion of the
parameter space, a low-order polynomial model is often an accurate approximation to the true
data trends, and (2) the least-squares procedure provides a surface fit that smooths out noise in
the data. For this reason, surrogate-based optimization is often successful when using polynomial
models, particularly quadratic models. However, a polynomial surface fit may not be the best
choice for modeling data trends over the entire parameter space, unless it is known a priori that the
true data trends are close to linear, quadratic, or cubic. Furthermore, in general polynomial models
will not interpolate, i.e. predict with zero uncertainty, the data they are built from. If interpolation
is desired (as with deterministic computational models subject to negligible numerical noise), or if
lack of fit is observed, users should consider the kriging emulators described in the following section.
See [27] for additional information on polynomial models.

4.1.1 Fitting Polynomial Surrogates in Dakota

In the following discussion, typewriter font indicates the names of Dakota input or output files,
keywords, commands, or results. All input, output, and log files mentioned in this subsection
can be found in examples/SurrogateModels. Listings 4.1 and 4.2 together show the Dakota
input file cantilever polynomial eval.in for evaluating a quadratic polynomial emulator of the
cantilever beam model outputs at user-specified values of the inputs x. The values of x at which to
evaluate the emulator are given in the list parameter study block of the input file (line 22). The
keyword sampling (line 58), together with sample type lhs (line 60) tells Dakota to generate a
Latin hypercube sample. Dakota then runs the cantilever beam model on the resulting 60 input
settings (line 61), producing output for the three indicated response variables (area, stress, and
displacement). The design and output results are then used by Dakota to fit a quadratic polynomial
model to each response (line 37). Dakota also allows linear and cubic polynomial trend options.
Finally, predicted responses corresponding to each user specified input setting are written to the
file cantilever polynomial evals.dat (line 9):

%eval_id R E X Y w t area stress displacement
1 32887.97269 36889581.78 408.9821034 1148.6638 2.099541047 2.004037063 4.207558073 76546.06547 5.914253488
2 43482.92921 16550393.66 639.6736606 1051.841799 2.014840025 2.19097364 4.414461384 64938.20937 11.96142127
3 36220.72048 44845837.48 561.1743862 935.4138043 2.109386061 2.136922015 4.507593512 57481.41311 2.627795226
4 47325.31136 25228026.72 348.841119 876.590786 2.190414084 2.082472944 4.561478066 28938.90198 5.259963951

By specifying a random number seed (line 59), the results obtained from running Dakota are
repeatable, which is useful for regression testing purposes and for situations in which intermediate
results (such as experimental designs) must be regenerated exactly in follow-on Dakota analyses.

In this example, we chose to generate a Latin hypercube sample to fit the quadratic surrogate
model. Latin hypercube samples are frequently used to fit kriging surrogates (Section 4.2) for
complex computational model quantities of interest due to their space-filling nature; however,
they can be less efficient than various alternatives more commonly selected for fitting polynomial
surrogates, particularly when modeling responses from physical experiments subject to observation
error. Two such alternatives for obtaining quadratic emulators are available in Dakota, selected
by replacing the sampling block with dace central composite for central composite designs [8]
or dace box behnken for Box-Behnken designs [7]. Central composite designs generate N = 1 +
2M+2M samples, while Box-Behnken designs generate N = 1+4M(M−1)/2 samples. A seed can
also be specified with dace options for repeatability. The option dace oas allows for generation

43

CASL-U-2014-0038-000

Listing 4.1: Dakota input file producing predictions at user-specified inputs from a quadratic poly-
nomial emulator for the cantilever beam problem.

Build and evaluate a quadratic polynomial emulator of cantilever beam

2 # at a user specified set of points

4 # Top -level controls

strategy

6 single_method

method_pointer = ’EvalSurrogate ’

8 tabular_graphics_data

tabular_graphics_file = ’cantilever_polynomial_evals.dat ’

10

Method to perform evaluations of the emulator

12 method

id_method = ’EvalSurrogate ’

14 model_pointer = ’SurrogateModel ’

16 # Verbose will show the type form of the surrogate model

output verbose

18

20 # Emulator evaluation option #1: Provide user specified inputs in the

Dakota input file

22 list_parameter_study

list_of_points

24 # R E X Y w t

32887.97269 36889581.78 408.9821034 1148.6638 2.099541047 2.004037063

26 43482.92921 16550393.66 639.6736606 1051.841799 2.014840025 2.19097364

36220.72048 44845837.48 561.1743862 935.4138043 2.109386061 2.136922015

28 47325.31136 25228026.72 348.841119 876.590786 2.190414084 2.082472944

30

Surrogate model specification

32 model

id_model = ’SurrogateModel ’

34 surrogate global

dace_method_pointer = ’DesignMethod ’

36 # Quadratic polynomial model

polynomial quadratic

38 # compute and print diagnostics after build

metrics ’rsquared ’ ’root_mean_squared ’

40 press

44

CASL-U-2014-0038-000

Listing 4.2: (Continued) Dakota input file producing predictions at user-specified inputs from a
quadratic polynomial emulator for the cantilever beam problem.

42 variables ,

uniform_uncertain = 6

44 upper_bounds 48000. 45.E+6 700. 1200. 2.2 2.2

lower_bounds 32000. 15.E+6 300. 800. 2.0 2.0

46 descriptors ’R’ ’E’ ’X’ ’Y’ ’w’ ’t’

48 responses

response_functions = 3

50 descriptors = ’area ’ ’stress ’ ’displacement ’

no_gradients

52 no_hessians

54 # Method to generate a 60 run Latin hypercube design to build the emulator

method

56 id_method = ’DesignMethod ’

model_pointer = ’SimulationModel ’

58 sampling

seed = 20

60 sample_type lhs

samples = 60

62

The true simulation model to evaluate to build the emulator

64 model

id_model = ’SimulationModel ’

66 single

interface_pointer = ’SimulationInterface ’

68

interface ,

70 id_interface = ’SimulationInterface ’

direct

72 analysis_driver = ’mod_cantilever ’

45

CASL-U-2014-0038-000

of orthogonal array designs [18] to support polynomial surrogate fits and main effects analysis
(Chapter 3).

Dakota was run with the command dakota -i cantilever polynomial eval.in >& reg.log

&. The log file reg.log provides the surrogate parameter estimates β̂ and σ̂2, as well as leave-one-
out cross-validation root mean squared prediction errors (input file, line 40) for each output, which
evaluated to 8.3476172226e-16, 5.2744083954e+01, and 3.7407615270e-01 for area, stress, and
displacement respectively. The root mean squared prediction error (RMSPE) provides a good
overall estimate of emulator out-of-sample predictive capability.

A K-fold cross-validation procedure is also available in Dakota by replacing the press option
(line 40) with cross validate folds = K. The K-fold cross-validation procedure involves ran-
domly partitioning the training data into K subsets, each containing approximately 100/K% of
the data. For each subset, the 100/K% of the design runs and their corresponding outputs are “held
out”, and the surrogate refitted with the remaining 100 ∗ (K − 1)/K% of the design runs and asso-
ciated outputs. The 100/K% hold-out points are then predicted by the refitted emulator. Thus a
total of K surrogate rebuilds are conducted, each leaving out 100/K% of the original training data,
and the RMSPE is computed for all of the hold-out design points over the whole procedure. Run-
ning Dakota with K = 10, the RMSPE evaluated to 6.1748098826e-16, 5.3512924399e+01, and
3.8966016172e-01 for area, stress, and displacement respectively. These results are qualitatively
similar to the leave-one-out cross-validation results. Note that the leave-one-out cross-validation
procedure is equivalent to N -fold cross-validation.

4.2 Kriging and Gaussian Process Models

The set of techniques known as kriging were originally developed in the geostatistics and spatial
statistics communities to produce maps of underground geologic deposits based on a set of widely
and irregularly spaced borehole sites [9]. Building a kriging model typically involves the

1. Choice of a trend function,

2. Choice of a correlation function, and

3. Estimation of correlation parameters.

Suppose outputs (e.g. deposits from the borehole sites) are to be collected at the N inputs
{x1, . . . , xN} to train a kriging surrogate Y (x) for the output at input x. The emulator used for pre-
diction of Y (x) is assumed to be linear in these outputs, Ŷ (x) =

∑N
i=1 ci(x)Y (xi). The coefficient

vector c(x) is determined by minimizing the mean squared error of prediction E

[(
Y (x)− Ŷ (x)

)2
]

for fixed correlation parameters, subject to the unbiasedness constraint E
[
Ŷ (x)

]
= E [Y (x)]. The

notation E[·] indicates expected value. The optimized mean squared error of prediction quantifies
the uncertainty in prediction of Y (x).

Kriging surrogates can also be derived from Gaussian processes, which further assume that
arbitrary collections of observed outputs follow multivariate Gaussian distributions for fixed trend,
variance and correlation parameters. In Dakota, the Gaussian process (GP) framework is adopted
to facilitate covariance parameter estimation through techniques such as maximum likelihood and
uncertainty quantification via standard statistical inference methods.

46

CASL-U-2014-0038-000

A kriging surrogate, Y (x), consists of a trend function (frequently a linear model gT (x)β) plus
a Gaussian process error model (ε(x)) that modifies the trend function locally,

Y (x) = gT (x)β + ε(x) .

This specifies a stochastic process representation of the unknown true surface f(x). The error
process ε(x) is assumed initially to have mean zero and constant variance σ2. Furthermore, corre-
lated errors in the input space are allowed by specifying a covariance function. In particular, the
covariance between the errors at two arbitrary input locations x and x′ is modeled as

Cov
(
Y (x), Y (x′)

)
= Cov

(
ε(x), ε(x′)

)
= σ2 r

(
x, x′

)
,

where r (x, x′) is a correlation function (i.e. a symmetric, positive definite function satisfying
r (x, x) = 1). In the following, this correlation function is assumed to depend on the values of
unknown parameters φ, designated r (x, x′|φ).

When the true surface results from evaluation of a deterministic computational model, the
error process ε(x) can be specified in such a way that the emulator will interpolate, with zero
uncertainty, the model runs it was built from. This is accomplished through selection of a corre-
lation function with requisite smoothness properties, discussed further below. The error process
specification is modified as follows to accommodate physical experiments subject to measurement
or replicate variability, stochastic computational models, or deterministic computational models for
which numerical or high frequency noise is of concern,

Cov
(
ε(x), ε(x′)

)
= σ2 r

(
x, x′|φ

)
+ ∆2δ

(
x− x′

)
,

where

δ
(
x− x′

)
=

{
1 if x− x′ = 0
0 otherwise

and ∆2 is the variance of the observational or numerical error. In the ensuing discussion, the term
“nugget” refers to the ratio η = ∆2/σ2.

Figure 4.1 illustrates the behavior of emulators that interpolate versus emulators that smooth
output data. In each panel, the red filled circles represent observed outputs and the red curve
designates the emulator mean. The gray shaded area outlines the ensemble of pointwise 95%
prediction intervals as a function of the input x, computed using the emulator standard error. That
is, for any specified x, there is 95% probability that a future sampled output would lie between the
lower and upper bounds of the gray shaded area. The left panel illustrates an error process selected
for interpolation. Note the emulator mean passes directly through the three observed outputs, and
there is no emulator uncertainty at these points (zero width to the prediction intervals). Prediction
uncertainty grows as the input level x moves away from any input location at which output is
observed. The right panel illustrates an error process selected for smoothing. In this case, the
emulator mean defines a smooth surface that predicts the four observed outputs without being
required to recover their values exactly with zero uncertainty. The prediction intervals do not
narrow as x approaches an input location at which output is observed. Kriging models with no
nugget effect (η = 0) will interpolate, while polynomial models or kriging models with a positive
nugget effect (η > 0) will smooth.

By convention, the terms simple kriging, ordinary kriging, and universal kriging are used to
indicate the three most common choices for the trend function. In simple kriging, the trend is

47

CASL-U-2014-0038-000

x

y ●
●

●

x

y

●
●

●

●

Figure 4.1: Emulator that interpolates (left) and smooths (right) observed output.

treated as a known constant, usually zero, gT (x)β ≡ 0. Universal kriging [24] uses a general
polynomial trend model gT (x)β with coefficients determined by generalized least squares regression.
Dakota allows specification of linear or quadratic trend models. For quadratic models, the user
can choose to include or omit the interaction terms among the input variables. Ordinary kriging
is essentially universal kriging with a trend order of zero, i.e. the trend function is treated as
an unknown constant and g(x) = 1. As before, Nβ denotes the number of basis functions in
g(x) and therefore the number of elements in the vector β. Ordinary kriging is typically selected
when emulating code output, as GP models often have sufficient flexibility to detect complex
trends without the need for estimating the additional parameters required by a more complex
trend function. However, if prior knowledge about more complex trends is available, it should
be incorporated into trend function specification, particularly if the emulator is to be used for
extrapolation.

The maximum likelihood value of β for fixed correlation parameters is computed via generalized
least squares utilizing the correlation matrix R(φ) of the error process,

β̂(φ) =
(
GTR−1(φ)G

)−1
GTR−1(φ) y .

Here G is a N by Nβ matrix that contains evaluations of the polynomial basis functions at all
runs in the N by M sample design X, Gij = gj

(
XT
i

)
, i = 1, . . . , N ; j = 1, . . . , Nβ. The real,

symmetric, positive-definite correlation matrix R(φ) from the error model contains evaluations of
the correlation function r(·, ·|φ) at all pairwise combinations of runs in the sample design X,

Rij(φ) = Rji(φ) = r
(
XT
i , X

T
j |φ
)

= r
(
XT
j , X

T
i |φ
)

There is a single family of correlation functions implemented in Dakota, the power exponential:

r (xi, xj |φ) = exp

(
−

M∑
k=1

φk |xik − xjk|γ
)

48

CASL-U-2014-0038-000

where 0 < γ ≤ 2 and φk > 0. The sample paths of a process equipped with this correlation function
are everywhere continuous and nowhere differentiable for 0 < γ < 2, and analytic for γ = 2. Dakota
allows only this latter specification, referred to as the squared exponential or Gaussian correlation
function. Note that N ≥ Nβ + M + 1 is required to estimate β, the error variance σ2, and the
correlation function parameters φ. Estimation of the nugget η in addition to all other surrogate
parameters requires N ≥ Nβ +M + 2.

The emulator mean µ̃(x|φ) evaluated at input x is a best linear unbiased predictor of the
surrogate Y (x),

µ̃(x|φ) = gT (x)β̂(φ) + r̄T (x|φ)R−1(φ)
(
y −Gβ̂(φ)

)
,

where r̄i(x|φ) = r
(
x,XT

i |φ
)
. This emulator will interpolate the data that the kriging model was

built from as long as no nugget is specified or fit and its correlation matrix R(φ) is numerically
non-singular.

The emulator variance σ̃2(x|φ) (here, the mean squared error of prediction) evaluated at input
x provides a spatially varying measure of prediction uncertainty,

σ̃2(x|φ) = σ̂2(φ)
(
1− r̄T (x|φ)R−1(φ) r̄(x|φ)

+
(
g(x)−GTR−1(φ) r̄(x|φ)

)T (
GTR−1(φ)G

)−1 (
g(x)−GTR−1(φ) r̄(x|φ)

))
,

where an unbiased estimate of σ2 for fixed correlation parameters is

σ̂2(φ) =

(
y −Gβ̂(φ)

)T
R−1(φ)

(
y −Gβ̂(φ)

)
N −Nβ

.

Dakota completes construction of the kriging model by using optimization to find a set of
correlation parameters φ (and if applicable, nugget η) that maximize the likelihood of observing
the available data. This is equivalent to minimizing the following objective function,

obj(φ) = log
(
σ̂2(φ)

)
+

log (det (R(φ))) + log
(
det
(
GTR−1(φ)G

))
N −Nβ

.

Polynomial surrogates are a special case of kriging surrogates, resulting from setting r (x, x′) = 1
if x = x′ and 0 otherwise, and ∆ = 0.

4.2.1 Fitting Kriging Surrogates in Dakota

In the following discussion, typewriter font indicates the names of Dakota input or output files,
keywords, commands, or results. All input, output, and log files mentioned in this subsection can
be found in examples/SurrogateModels. Listings 4.3 and 4.4 together show the Dakota input
file cantilever gp eval.in for evaluating a GP emulator of the cantilever beam model output
at user specified input settings. This surrogate model assumes unknown constant trend (line 35),
representing the default ordinary kriging specification. Universal kriging options are also available,
by specifying a linear, reduced quadratic, or quadratic trend. The reduced quadratic option
fits a quadratic trend in the absence of interaction terms. This job shows how these input settings
can be read from the user specified input file cantilever user points.dat (line 24), which has
the following format:

49

CASL-U-2014-0038-000

%eval_id R E X Y w t

1 32887.97269 36889581.78 408.9821034 1148.6638 2.099541047 2.004037063

2 43482.92921 16550393.66 639.6736606 1051.841799 2.014840025 2.19097364

3 36220.72048 44845837.48 561.1743862 935.4138043 2.109386061 2.136922015

4 47325.31136 25228026.72 348.841119 876.590786 2.190414084 2.082472944

The keyword sampling (line 56) together with sample type lhs (line 58) tells Dakota to generate
a Latin hypercube sample. Dakota then runs the cantilever beam model on the resulting 60 input
settings (line 59), producing output for the three indicated response variables (area, stress, and
displacement). The design and output results are then used by Dakota to fit a GP with estimated
constant trend to each response, and finally predicted responses corresponding to each user specified
input setting are written to the file cantilever gp evals.dat (line 9):

%eval_id R E X Y w t area stress displacement
1 32887.97269 36889581.78 408.9821034 1148.6638 2.099541047 2.004037063 4.209402759 76378.17522 5.360993694
2 43482.92921 16550393.66 639.6736606 1051.841799 2.014840025 2.19097364 4.413155956 65000.4832 12.41942451
3 36220.72048 44845837.48 561.1743862 935.4138043 2.109386061 2.136922015 4.506773804 57529.4144 2.511857535
4 47325.31136 25228026.72 348.841119 876.590786 2.190414084 2.082472944 4.560423301 29135.16863 5.260298986

By specifying a random number seed (line 57), the results obtained from running Dakota are
repeatable.

A minimum run size was previously indicated based on the desire to obtain at least as many
runs as unknown surrogate parameters. However, more conservative run sizes are often selected,
such as a factor of 10 times the number of “active inputs.” Since this latter quantity is often not
known, N = 10M is often selected [23]. With M = 6, this is the basis for the run size of 60 chosen
for this example.

Dakota was run with the command dakota -i cantilever gp eval.in >& gp.log &. The

log file gp.log provides the surrogate parameter estimates φ̂, β̂(φ̂) and σ̂2(φ̂), as well as the
leave-one-out cross-validation RMSPEs (input file, line 38) for each output, which evaluated to
1.1264992653e-03, 1.4913388456e+02, and 1.1507679873e-01 for area, stress, and displace-
ment respectively. For K = 10, the cross-validation RMSPEs for each output evaluated to
1.2088124274e-03, 1.4905338700e+02, and 1.4178321830e-01 for area, stress, and displacement
respectively. Kriging fits can be adversely affected if the proportion of runs held out for cross-
validation is too large (problem dependent), so it is typical to use K = N (i.e. leave-one-out) in
this setting.

Table 4.1 collects the four predictions of each output made by the quadratic polynomial and
kriging emulators for comparison with direct code calculations. These predictions track variation
in the code calculations well, an observation consistent with the small size of the cross-validation
RMSPEs relative to the observed range in the calculations for each output.

4.3 Summary

Table 4.2 summarizes the essential Dakota options for specifying polynomial regression or kriging
models, with guidance on which method is to be preferred based on the nature of the physical/-
computational experiment output and assumptions about the statistical modeling of residual error.
Additional details on fitting kriging and other surrogates such as multivariate adaptive regression

50

CASL-U-2014-0038-000

Listing 4.3: Dakota input file producing predictions at user specified inputs from a GP emulator
with estimated constant trend for the cantilever beam problem.

Build and evaluate a Gaussian process emulator of cantilever beam

2 # at a user specified set of points

4 # Top -level controls

strategy

6 single_method

method_pointer = ’EvalSurrogate ’

8 tabular_graphics_data

tabular_graphics_file = ’cantilever_gp_evals.dat ’

10

12 # Method to perform evaluations of the emulator

method

14 id_method = ’EvalSurrogate ’

model_pointer = ’SurrogateModel ’

16

Verbose will show the type form of the surrogate model

18 output verbose

20 # -----

Emulator evaluation option #2: Provide user specified inputs in a

22 # separate file

list_parameter_study

24 import_points_file ’cantilever_user_points.dat ’

26

Surrogate model specification

28 model

id_model = ’SurrogateModel ’

30 surrogate global

dace_method_pointer = ’DesignMethod ’

32 # GP model

gaussian_process surfpack

34 trend

constant

36 # compute and print diagnostics after build

metrics ’rsquared ’ ’root_mean_squared ’

38 press

51

CASL-U-2014-0038-000

Listing 4.4: (Continued) Dakota input file producing predictions at user specified inputs from a
GP emulator with estimated constant trend for the cantilever beam problem.

40 variables ,

uniform_uncertain = 6

42 upper_bounds 48000. 45.E+6 700. 1200. 2.2 2.2

lower_bounds 32000. 15.E+6 300. 800. 2.0 2.0

44 descriptors ’R’ ’E’ ’X’ ’Y’ ’w’ ’t’

46 responses

response_functions = 3

48 descriptors = ’area ’ ’stress ’ ’displacement ’

no_gradients

50 no_hessians

52 # Method to generate a 60 run Latin hypercube design to build the emulator

method

54 id_method = ’DesignMethod ’

model_pointer = ’SimulationModel ’

56 sampling

seed = 20

58 sample_type lhs

samples = 60

60

The true simulation model to evaluate to build the emulator

62 model

id_model = ’SimulationModel ’

64 single

interface_pointer = ’SimulationInterface ’

66

interface ,

68 id_interface = ’SimulationInterface ’

direct

70 analysis_driver = ’mod_cantilever ’

52

CASL-U-2014-0038-000

Table 4.1: Polynomial and kriging emulator predictions compared with code calculations.
Area

Case Calculation Polynomial Kriging

1 4.207558073 4.207558073 4.209402759
2 4.414461384 4.414461384 4.413155956
3 4.507593512 4.507593512 4.506773804
4 4.561478066 4.561478066 4.560423301

Stress

Case Calculation Polynomial Kriging

1 76625.08025 76546.06547 76378.17522
2 64919.07096 64938.20937 65000.4832
3 57457.96055 57481.41311 57529.4144
4 28991.46319 28938.90198 29135.16863

Displacement

Case Calculation Polynomial Kriging

1 5.495297702 5.914253488 5.360993694
2 12.52267129 11.96142127 12.41942451
3 2.506561572 2.627795226 2.511857535
4 5.213217663 5.259963951 5.260298986

Table 4.2: Guidelines for selection of surrogate methods.
Method Applications Applicable Methods

Classification

polynomial smooth fit to physical experiment polynomial linear,
regression response or stochastic/noisy polynomial quadratic,

computational experiment response polynomial cubic
[iid residual errors]

kriging interpolation of deterministic smooth gaussian process surfpack,
computational experiment response trend constant,

(specify trend option only) trend linear,
or smooth fit to stochastic/noisy trend reduced quadratic,

computational experiment response trend quadratic,
(specify trend and nugget options) nugget ETA (> 0),

[correlated residual errors] find nugget

splines (MARS), simple artificial neural networks, or basic radial basis functions can be found in
the Surfpack User’s Manual [10].

53

CASL-U-2014-0038-000

Chapter 5

Optimization and Deterministic
Calibration

The objective of optimization algorithms is to minimize (or maximize) an objective function, typ-
ically calculated by the user simulation code, subject to constraints on design variables and re-
sponses. Examples of optimization goals include:

• Identify system designs with maximal performance; e.g., case geometry that minimizes drag
and weight, yet is sufficiently strong and safe.

• Determine operational settings that maximize system performance, e.g., fuel re-loading pat-
tern yielding the smoothest nuclear reactor power distribution while maximizing output.

• Identify minimum-cost system designs/operational settings, e.g., delivery network that mini-
mizes cost while also minimizing environmental impact.

• Identify best/worst case scenarios, e.g., impact conditions that incur the most damage.

• Calibration: Determine parameter values that maximize agreement between simulation re-
sponse and target response.

The last goal is a critical use case for CASL. The calibration (parameter estimation, inverse problem)
process involves adjusting input parameters to optimally fit a model to experimental or high-fidelity
computational model data, find operational settings that best match a prescribed performance
profile, or determine source terms for an observed phenomenon. Any Dakota optimization method
can be applied to calibration problems, though some are tailored to efficiently address local least
squares problem formulations. This chapter emphasizes deterministic model calibration, while
non-deterministic approaches such as Bayesian methods are treated in Uncertainty Quantification,
Chapter 6.

Available optimization approaches in Dakota include well-tested, proven gradient-based, derivative-
free local, and global methods for use in science and engineering design applications. Dakota
also offers more advanced algorithms, e.g., to manage multi-objective optimization or perform
surrogate-based minimization (useful for noisy or expensive problems). A more extensive treatment
of these can be found in “Optimization Capabilities,” “Nonlinear Least Squares Capabilities,” and
“Surrogate-Based Minimization” chapters of the Dakota User’s Manual [1]. This chapter continues
by introducing optimization terminology needed to select from the available approaches.

54

CASL-U-2014-0038-000

5.1 Terminology and Problem Formulations

This section provides a basic introduction to the mathematical formulation of optimization prob-
lems. The primary goal of this section is to introduce terms relating to these topics, and is
not intended to be a description of theory or numerical algorithms. For further details, con-
sult [4], [14], [16], [28], and [38].

A general optimization problem is formulated as follows:

minimize: f(x) objective function
over: x ∈ <M design variables

subject to: gL ≤ g(x) ≤ gU nonlinear inequality constraints
h(x) = ht nonlinear equality constraints

aL ≤ Aix ≤ aU linear inequality constraints
Aex = at linear equality constraints

xL ≤ x ≤ xU bound constraints

In this formulation, x = [x1, x2, . . . , xM] is an M -dimensional vector of real-valued design variables
or design parameters. The M -dimensional vectors xL and xU , are the lower and upper bounds,
respectively, on the design parameters. These bounds define the allowable values for the elements
of x, and the set of all allowable values is termed the design space or the parameter space. A design
point or a sample point is a particular set of values within the parameter space.

The optimization goal is to minimize the objective function, f(x), while satisfying the con-
straints. Constraints can be categorized as either linear or nonlinear and as either inequality or
equality. The nonlinear inequality constraints, g(x), are “2-sided,” in that they have both lower
and upper bounds, gL and gU , respectively. The nonlinear equality constraints, h(x), have target
values specified by ht. The linear inequality constraints create a linear system Aix, where Ai is
the coefficient matrix for the linear system. These constraints are also 2-sided as they have lower
and upper bounds, aL and aU , respectively. The linear equality constraints create a linear system
Aex, where Ae is the coefficient matrix for the linear system and at are the target values. The
constraints partition the parameter space into feasible and infeasible regions. A design point is said
to be feasible if and only if it satisfies all of the constraints. Correspondingly, a design point is said
to be infeasible if it violates one or more of the constraints.

Many different methods exist to solve the optimization problem given by Equation 5.1, all of
which iterate on x in some manner. That is, an initial value for each parameter in x is chosen,
the response quantities, f(x), g(x), h(x), are computed, often by running a simulation, and some
algorithm is applied to generate a new x that will either reduce the objective function, reduce the
amount of infeasibility, or both. To facilitate a general presentation of these methods, three criteria
will be used in the following discussion to differentiate them: optimization problem type, search
goal, and search method.

The optimization problem type can be characterized both by the types of constraints present
in the problem and by the linearity or nonlinearity of the objective and constraint functions. For
constraint categorization, a hierarchy of complexity exists for optimization algorithms, ranging from
simple bound constraints, through linear constraints, to full nonlinear constraints. By the nature
of this increasing complexity, optimization problem categorizations are inclusive of all constraint
types up to a particular level of complexity. That is, an unconstrained problem has no constraints,
a bound-constrained problem has only lower and upper bounds on the design parameters, a linearly-

55

CASL-U-2014-0038-000

constrained problem has linear constraints (and optionally bound constraints), and a nonlinearly-
constrained problem may contain the full range of nonlinear, linear, and bound constraints (though
may omit linear or bound constraints if not applicable). If all of the linear and nonlinear constraints
are equality constraints, then this is referred to as an equality-constrained problem, and if all of the
linear and nonlinear constraints are inequality constraints, then this is referred to as an inequality-
constrained problem.

Further categorizations can be made based on the linearity of the objective and constraint
functions. A problem where the objective function and all constraints are linear is called a linear
programming (LP) problem. These types of problems commonly arise in scheduling, logistics, and
resource allocation applications. Likewise, a problem where at least some of the objective and
constraint functions are nonlinear is called a nonlinear programming (NLP) problem. These NLP
problems predominate in engineering applications and are the primary focus of Dakota.

The search goal refers to the ultimate objective of the optimization algorithm, i.e., either
global or local optimization. In global optimization, the goal is to find the design point that gives
the lowest feasible objective function value over the entire parameter space. In contrast, in local
optimization, the goal is to find a design point that is lowest relative to a “nearby” region of the
parameter space. In almost all cases, global optimization will be more computationally expensive
than local optimization. Thus, the user must choose an optimization algorithm with an appropriate
search scope that best fits the problem goals and the computational budget.

The search method refers to the approach taken in the optimization algorithm to locate a
new design point that has a lower objective function or is more feasible than the current design
point. The search method can be classified as either gradient-based or nongradient-based. In a
gradient-based algorithm, gradients of the response functions are computed to find the direction
of improvement. The Hessian (matrix of second derivatives of objectives and constraints with
respect to parameters) can also be used in these methods to identify curvature to identify local
minima from maxima. Gradient-based optimization is the search method that underlies many
efficient local optimization methods. However, a drawback to this approach is that gradients
can be computationally expensive, inaccurate, or even nonexistent (the situation for Hessians is
typically even worse). In such situations, nongradient-based search methods may be useful. There
are numerous approaches to nongradient-based optimization. Some of the more well known of
these include pattern search methods (nongradient-based local techniques) and genetic algorithms
(nongradient-based global techniques).

5.1.1 Special Considerations for Calibration

Any Dakota optimization algorithm can be applied to calibration problems arising in parameter
estimation, system identification, and test/analysis reconciliation. However, nonlinear least-squares
methods are optimization algorithms that exploit the special structure of a least squares or sum-of-
squares objective function [14]. Here the misfit between vectors of model responses and simulation
data is measured in the Euclidean or two-norm.

To exploit the problem structure, more granularity is needed in the response data than is
required for a typical optimization problem. That is, rather than using the sum-of-squares objective
function and its gradient, least-squares iterators require each term used in the sum-of-squares
formulation along with its gradient. This means that the functions in the Dakota response data set
consist of the N individual least-squares terms along with any nonlinear inequality and equality
constraints. These individual terms are often called residuals when they denote differences of

56

CASL-U-2014-0038-000

observed quantities from values computed by the model whose parameters are being estimated.
The enhanced granularity needed for nonlinear least-squares algorithms allows for simplified

computation of an approximate Hessian matrix. In Gauss-Newton-based methods for example,
the true Hessian matrix is approximated by neglecting terms in which residuals multiply Hessians
(matrices of second partial derivatives) of residuals, under the assumption that the residuals are
zero in expected value under the nonlinear least-squares model. As a result, residual function value
and gradient information (first-order information) is sufficient to define the value, gradient, and
approximate Hessian of the sum-of-squares objective function (second-order information).

In practice, least-squares solvers will tend to be significantly more efficient than general-purpose
optimization algorithms when the Hessian approximation is a good one, i.e., when the neglected
component has negligible effect at the solution. Specifically, they can exhibit the quadratic con-
vergence rates of full Newton methods, even though only first-order information is used. Gauss-
Newton-based least-squares solvers may experience difficulty when the residuals at the solution are
significant. Dakota has three solvers customized to take advantage of the sum of squared residuals
structure in this problem formulation. Least squares solvers may experience difficulty when the
residuals at the solution are significant, although experience has shown that Dakota’s NL2SOL
method can handle some problems that are highly nonlinear and have nonzero residuals at the
solution.

Specialized least squares solution algorithms can exploit the structure of a sum-of-squares ob-
jective function for problems of the form:

minimize: f(θ) =
∑N

i=1[Ti(θ)]
2 =

∑N
i=1[yi(θ)− di]2 least squares objective function

over: θ ∈ <M calibration variables
subject to: gL ≤ g(x) ≤ gU nonlinear inequality constraints

h(θ) = ht nonlinear equality constraints
aL ≤ Aiθ ≤ aU linear inequality constraints

Aeθ = at linear equality constraints
θL ≤ θ ≤ θU bound constraints

where f(θ) is the objective function to be minimized and Ti(θ) is the i-th least squares term. The
bound, linear, and nonlinear constraints are the same as described previously for (5.1). Specialized
least squares algorithms are generally based on the Gauss-Newton approximation. When differen-
tiating f(θ) twice, terms of Ti(θ)T

′′
i (θ) and [T ′i (θ)]

2 result. Because Ti(θ) is zero in expected value
under the nonlinear least-squares model, the Hessian matrix of second derivatives of f(θ) can be
approximated using only first derivatives of Ti(θ). As a result, Gauss-Newton algorithms exhibit
quadratic convergence rates near the solution for those cases when the Hessian approximation is
accurate, i.e. the neglected component has negligible effect at the solution. Thus, by exploiting the
structure of the problem, the second order convergence characteristics of a full Newton algorithm
can be obtained using only first order information from the least squares terms. For problems with
nonsmooth gradients or poor finite difference approximations, see [21].

A common example for Ti(θ) might be the difference between experimental data and model
predictions for a response quantity at a particular location and/or time step, i.e.:

Ti(θ) = yi(θ)− di

where yi(θ) is the response quantity predicted by the model and di is the corresponding experimental
data. In this case, θ would have the meaning of model parameters which are not precisely known

57

CASL-U-2014-0038-000

and are being calibrated to match available data. This class of problem is known by the terms
parameter estimation, system identification, model calibration and test/analysis reconciliation, for
example.

This overview of optimization problem formulations and goals approaches underscores that no
single optimization method or algorithm works best for all types of optimization problems. The
following section offers some basic guidelines for choosing one for specific optimization problems.

5.2 Recommended Methods

In selecting an optimization method, important considerations include the type of variables in
the problem (continuous, discrete, mixed), whether a global search is needed or a local search is
sufficient, and the required constraint support (unconstrained, bound constrained, or generally con-
strained). Less obvious, but equally important, considerations include the efficiency of convergence
to an optimum (i.e., convergence rate) and the robustness of the method in the presence of chal-
lenging design space features (e.g., nonsmoothness). Sensitivity analysis (described in Chapter 3) is
a critical precursor to assess problem characteristics prior to choosing and applying an optimization
method.

For example the cantilever beam optimization problem posed in (2.3) in Section 2.1 has con-
tinuous design variables only, nonlinear inequality constraints, and bound constraints. Sensitivity
analysis in Section 3.2 indicated that the objective and constraints are smooth functions of the
design variables. This can also be directly inferred from the algebraic physics equations for the
cantilever beam (2.1), though cannot for a general physics simulation.

Table 5.1 highlights a few key Dakota optimization approaches and problems for which they
are suited. The following sections offer more details on the approaches and input file examples.
Without considering specific problem knowledge or characteristics, a derivative-free local pattern
search approach is typically a good starting point. If it doesn’t find good solutions, move to a
genetic algorithm. If it is too costly, move to a surrogate-based approach. However, when problems
are smooth and not too multimodal, a local algorithm will outperform these other approaches.

5.2.1 Gradient-Based Local Methods

Gradient-based optimizers are best suited for efficient navigation to a local minimum in the vicinity
of the initial point. They are not intended to find global optima in nonconvex design spaces. For
global optimization methods, see Section 5.2.3. Gradient-based optimization methods are highly
efficient, with the best convergence rates of all of the local optimization methods, and are the meth-
ods of choice when the problem is smooth, unimodal, and well-behaved. However, these methods
can be among the least robust when a problem exhibits nonsmooth, discontinuous, or multimodal
behavior. Figure 5.1 depicts a multimodal function on which gradient-based optimizers will typi-
cally find only a nearby local minimum. The derivative-free methods described in Section 5.2.2 are
more appropriate for problems with some of these characteristics.

Newton methods are representative of gradient-based optimization methods. These can be
derived by applying Newton’s method for root finding to ∇f(x) = 0 to find a local minimum of the
objective function. The resulting progression from current iterate xn to next iterate xn+1 is then

xn+1 = xn −
(
∇2f(xn)

)−1∇f(xn).

58

CASL-U-2014-0038-000

Table 5.1: Guidance for selecting from the top recommended Dakota optimization algorithms.

algorithm type /
Dakota method

variable
type

cost
(samples)

goal and characteristics

gradient-based local/
OPT++ Quasi-Newton

continuous low/
medium

single local solution/improvement, as-
sumes smooth input/output mapping

local calibration /
OPT++ Gauss Newton

continuous low/
medium

same as previous line, but tailored to
least-squares calibration

derivative-free local /
Coliny Pattern Search

continuous medium/
high

single local solution; better when can’t
estimate derivatives

local w/surrogate /
Surrogate-based Local

continuous medium same as “derivative-free local,” but for
noisier or more expensive simulations

global / Coliny
Evolutionary Algorithm

continuous
or discrete

high global optimality, with ranked family
of best solutions

global w/surrogate /
Efficient Global

continuous medium same as “global,” but for more expen-
sive simulations

Figure 5.1: Surface plot with contours of an example function that is locally smooth, but globally
multimodal.

This naive iteration directly requires the gradient and Hessian (∇2f(x)) of the objective function.
In practice this basic iteration is enhanced with strategies to choose an appropriate step length to
achieve expected decrease with each iteration, approximate the action of the Hessian-vector product
when not directly available, and handle nonlinear constraints, for example via penalty methods.

Gradient accuracy is a critical factor for gradient-based optimizers, as inaccurate derivatives
will often lead to failures in the search or premature termination of the method. Analytic gradients
and Hessians are ideal but often unavailable. If analytic gradient and Hessian information can
be provided by an application code, a full Newton method will achieve quadratic convergence
rates near the solution. If only gradient information is available and the Hessian information is
approximated from an accumulation of gradient data, the superlinear convergence rates can be
obtained. It is most often the case for engineering applications, however, that a finite difference

59

CASL-U-2014-0038-000

method will be used by the optimization algorithm to estimate gradient values. Dakota allows the
user to select the step size for these calculations, as well as choose between forward-difference and
central-difference algorithms. The finite difference step size should be selected as small as possible,
to allow for local accuracy and convergence, but not so small that the steps are “in the noise.”
This requires an assessment of the local smoothness of the response functions using, for example, a
parameter study method. Central differencing will generally produce more reliable gradients than
forward differencing but at roughly twice the expense.

A typical iteration history and search path for a gradient-based optimization solver is shown
in Figure 5.2. Notice the algorithm efficiently going downhill with respect to the contours of the
notional objective function.

(a)

(b)

Figure 5.2: Gradient-based unconstrained optimization example: (a) screen capture of the Dakota
graphics and (b) sequence of design points (dots) evaluated (line search points omitted).

Recommended method: The recommended local derivative-based solver in Dakota comes
from the OPT++ package. A Dakota input example for the cantilever beam optimization problem
(see Section 2.1) is shown in Listing 5.1. The iteration starts at the initial iterate for (w, t) specified

60

CASL-U-2014-0038-000

in initial point on line 16. The state variables are held fixed at their given values. The algorithm
seeks to minimize the cantilever objective function (area), within the bound constraints specified on
lines 15 and 17, subject to constraints on stress and displacement specified on line 30. The algorithm
will terminate when the convergence criteria from lines 7 and 8 are met. Notice the responses section
specifies numerical gradients (line 32), indicating that Dakota should approximate the derivatives
of model responses with respect to parameters via finite differences. If the response is a rough or
strongly nonlinear function of the parameters, these approximations can be poor and yield bad
performance or results. Figure 5.3 shows an excerpt of the Dakota output, showing the optimal
design point found.

Listing 5.1: Dakota input file showing local gradient-based optimization on the cantilever beam
problem.

strategy

2 single_method

tabular_graphics_data

4 tabular_graphics_file ’cantilever_opt_grad.dat ’

6 method

optpp_q_newton

8 convergence_tolerance 1.0e-4

constraint_tolerance 1.0e-1

10

model

12 single

14 variables

continuous_design = 2

16 upper_bounds 4.0 4.0

initial_point 2.4 3.5

18 lower_bounds 1.0 1.0

descriptors ’w’ ’t’

20 continuous_state = 4

initial_state 40000. 29.E+6 500. 1000.

22 descriptors ’R’ ’E’ ’X’ ’Y’

24 interface

direct

26 analysis_driver = ’mod_cantilever ’

28 responses

objective_functions = 1

30 # constraints assumed <= 0 unless bounds given

nonlinear_inequality_constraints = 2

32 descriptors = ’area ’ ’stress ’ ’displacement ’

numerical_gradients forward

34 fd_step_size 1.0e-6

no_hessians

Variation for calibration: Listing 5.2 shows the Dakota input variation to directly treat
calibration with a least-squares specific gradient-based solver. This example tunes the active vari-
ables (line 14) θ = (E,w, t) to match synthetic experimental data from a file, with (line 30) or

61

CASL-U-2014-0038-000

<<<<< Function evaluation summary: 18 total (18 new, 0 duplicate)

<<<<< Best parameters =

2.4000000000e+00 w

3.5000000000e+00 t

4.0000000000e+04 R

2.9000000000e+07 E

5.0000000000e+02 X

1.0000000000e+03 Y

<<<<< Best objective function =

8.4000000000e+00

<<<<< Best constraint values =

-4.7108843537e+03

-2.9685051703e-01

Figure 5.3: Dakota output showing optimal local gradient-based optimization result for cantilever
beam.

without (line 31) added noise. The data were generated using the following tuning parameter
values: E = 2.85E7, w = 2.5, t = 3.0, and fixed state parameter values: R = 40000, X = 500,
Y = 1000. The input file specifies calibration terms instead of objective functions at line
29, indicating to Dakota that it should treat these responses as terms in a least-squares calibration
problem. The data here is a set of three observations, one each for area, stress, and displacement.
The NL2SOL solver is used for this example as it performs better than the default-recommended
OPT++ Gauss-Newton solver.

The calibrated parameter values from the Dakota output are shown in Figure 5.4. Dakota has
recovered the true values of the parameters, verifying the operation of the algorithm. The output
from local calibration methods also includes confidence intervals on the parameters. With 95%
confidence the true value of each parameter lies in the interval specified, given the misfit between
the model and corresponding data. When this problem is exercised with noisy data, the confidence
intervals expectedly grow larger.

For problems not suitable for local gradient-based optimization, any of the optimization methods
discussed in the following sections can be applied to Dakota responses with calibration terms.
Dakota will automatically compute the objective function as the sum of squared residuals for
presentation to the optimization algorithm.

5.2.2 Derivative-Free Local Methods

Derivative-free methods can be more robust and more inherently parallel than gradient-based ap-
proaches. They can be applied in situations were gradient calculations are too expensive or un-
reliable. In addition, some derivative-free methods can be used for global optimization which
gradient-based techniques (see 5.2.1), by themselves, cannot. For these reasons, derivative-free
methods are often go-to methods when the problem may be nonsmooth, multimodal, or poorly
behaved. It is important to be aware, however, that they exhibit much slower convergence rates
for finding an optimum, and as a result, tend to be much more computationally demanding than
gradient-based methods. They often require from several hundred to a thousand or more function

62

CASL-U-2014-0038-000

Listing 5.2: Dakota input file showing deterministic local calibration with a least-squares solver on
the cantilever beam problem.

1 strategy

single_method

3 tabular_graphics_data

tabular_graphics_file ’cantilever_calibration.dat ’

5

7 method

nl2sol

9 convergence_tolerance 1.0e-6

output verbose

11

model

13 single

15 variables

active design

17 continuous_design 3

upper_bounds 31000000 10 10

19 initial_point 29000000 4 4

lower_bounds 27000000 1 1

21 descriptors ’E’ ’w’ ’t’

continuous_state 3

23 initial_state 40000 500 1000

descriptors ’R’ ’X’ ’Y’

25

interface

27 direct

analysis_driver = ’mod_cantilever ’

29

responses

31 calibration_terms 3

calibration_data_file = ’dakota_cantilever_examples.clean.dat ’

33 #calibration_data_file = ’dakota_cantilever_examples.error.dat ’

freeform

35 descriptors = ’area ’ ’stress ’ ’displacement ’

analytic_gradients

37 no_hessians

63

CASL-U-2014-0038-000

<<<<< Function evaluation summary: 18 total (17 new, 1 duplicate)

<<<<< Best parameters =

2.8499999995e+07 E

2.5000000002e+00 w

2.9999999997e+00 t

4.0000000000e+04 R

5.0000000000e+02 X

1.0000000000e+03 Y

<<<<< Best residual norm = 2.9442886479e-06; 0.5 * norm^2 = 4.3344178210e-12

<<<<< Best residual terms =

-2.3943602656e-10

2.9442885534e-06

7.0639355476e-10

<<<<< Best data captured at function evaluation 17

Confidence Interval for E is [2.8499511022e+07, 2.8500488969e+07]

Confidence Interval for w is [2.4999189436e+00, 2.5000810568e+00]

Confidence Interval for t is [2.9999176961e+00, 3.0000823033e+00]

Figure 5.4: Dakota output showing optimal local gradient-based calibration result for cantilever
beam, clean data.

evaluations for local methods, depending on the number of variables, and may require from thou-
sands to tens-of-thousands of function evaluations for global methods. Given the computational
cost, it is often prudent to use derivative-free methods to identify regions of interest and then use
gradient-based methods to hone in on the solution. In addition to slow convergence, nonlinear
constraint support in derivative-free methods is an open area of research and, while supported by
many methods in Dakota, is not as refined as constraint support in gradient-based methods.

Local pattern search algorithms work by sampling the objective function at points on a stencil,
often chosen to align with the coordinate axes. The stencil moves, expands, and contracts as the
algorithm progresses. A typical pattern search iteration history is provided in Figures 5.5(a) and
(b), which show the locations of the function evaluations used in the pattern search algorithm.
Figure 5.5(c) provides a close-up view of the pattern search function evaluations used at the start
of the algorithm (from a starting point (x1, x2) = (0.0, 0.0). The coordinate pattern is clearly visible
at the start of the iteration history, and the decreasing size of the coordinate pattern is evident at
the design points move toward (x1, x2) = (1.0, 1.0).

While pattern search algorithms are useful in many optimization problems, this example shows
some of the drawbacks to this algorithm. While a pattern search method may make good initial
progress towards an optimum, it is often slow to converge, here not fully converging after 2000
iterations. On a smooth, differentiable function such as that depicted, a nongradient-based method
will not be as efficient as a gradient-based method. However, there are many engineering design
applications where gradient information is inaccurate or unavailable, which renders gradient-based
optimizers ineffective. Thus, pattern search algorithms are often good choices in complex engineer-
ing applications when the quality of gradient data is suspect.

Recommended method: We recommend the Coliny Pattern Search algorithm for a derivative-

64

CASL-U-2014-0038-000

(a)

(b) (c)

Figure 5.5: Pattern search optimization example: (a) screen capture of the Dakota graphics, (b)
sequence of design points (dots) evaluated and (c) close-up view illustrating the shape of the
coordinate pattern used.

free local method. A Dakota input file shown in Listing 5.3 applies a pattern search method to
the cantilever beam optimization problem to minimize the objective function (area), subject to
constraints on stress and displacement (see Section 2.1). The input is similar to the input file for
the gradient-based optimization, except it has a different set of keywords in the method block of
the input file (line 6–15), and the gradient specification in the responses block has been changed to
no gradients (line 39). The pattern search optimization algorithm used, coliny pattern search

is part of the SCOLIB library [17]. See the Dakota Reference Manual [2] for more information on
the method block commands that can be used with SCOLIB algorithms.

The tailing portion of the Dakota output shows the final design point and constraint values; see
Figure 5.6. A solution similar to the gradient-based approach was found, though the constraint for
displacement was slightly violated (this can often be addressed through larger constraint penalties in
derivative-free methods; see commented option in the input file). However, the algorithm required
about an order of magnitude more function evaluations.

65

CASL-U-2014-0038-000

Listing 5.3: Dakota input file showing local derivative-free optimization on the cantilever beam
problem.

strategy

2 single_method

tabular_graphics_data

4 tabular_graphics_file ’cantilever_opt_ps.dat ’

6 method

max_iterations = 1000

8 max_function_evaluations = 2000

coliny_pattern_search

10 solution_accuracy = 1e-4

initial_delta = 0.5

12 threshold_delta = 1e-4

exploratory_moves basic_pattern

14 contraction_factor = 0.75

constraint_penalty = 10000

16

model

18 single

20 variables

continuous_design = 2

22 upper_bounds 4.0 4.0

initial_point 2.5 2.5

24 lower_bounds 1.0 1.0

descriptors ’w’ ’t’

26 continuous_state = 4

initial_state 40000. 29.E+6 500. 1000.

28 descriptors ’R’ ’E’ ’X’ ’Y’

30 interface

direct

32 analysis_driver = ’mod_cantilever ’

34 responses

objective_functions = 1

36 # constraints assumed <= 0 unless bounds given

nonlinear_inequality_constraints = 2

38 descriptors = ’area ’ ’stress ’ ’displacement ’

no_gradients

40 no_hessians

66

CASL-U-2014-0038-000

<<<<< Function evaluation summary: 149 total (149 new, 0 duplicate)

<<<<< Best parameters =

2.3875000000e+00 w

3.2493181357e+00 t

4.0000000000e+04 R

2.9000000000e+07 E

5.0000000000e+02 X

1.0000000000e+03 Y

<<<<< Best objective function =

7.7577470490e+00

<<<<< Best constraint values =

-1.6832688252e-01

4.1748455156e-02

<<<<< Best data captured at function evaluation 142

Figure 5.6: Dakota output showing results from local derivative-free optimization with a pattern
search algorithm.

5.2.3 Derivative-Free Global Methods

Dakota has a number of global optimization algorithms, including DiRECT, genetic algorithms,
and surrogate-based approaches. Here we discuss genetic algorithms. In contrast to pattern search
algorithms, which are local optimization methods, evolutionary algorithms (EA) are global opti-
mization methods. EAs are best suited to optimization problems that have multiple local optima,
and where gradients are either too expensive to compute or are not readily available.

Evolutionary algorithms work by generating an initial random sample in the parameter space,
computing function values/constraints at those points, and then determining the next places to
sample based on biological genetic selection principles of mutation and fitness. A simplified evolu-
tionary or genetic algorithm for optimization would include:

1. Initialize a random population (sample) of individual x values.

2. Evaluate the fitness with respect to optimization objective and constraints.

3. Select more fit individuals as parents to reproduce.

4. Recombine and mutate to create a new population.

5. Iterate to (2.) until convergence is reached.

Here the implementation details of each step, for example how to select parents, how to combine and
mutate, vary greatly among implementations, but are usually biologically inspired. Figure 5.7(a)
shows the population of 50 randomly selected design points that comprise the first generation of
the EA, and Figure 5.7(b) shows the final population of 50 design points, where most of the 50
points are clustered near (x1, x2) = (0.98, 0.95).

Listing 5.4 shows a Dakota input file that uses an EA to solve the cantilever beam optimization
problem as described in Section 2.1. Each generation of the EA has a population size of 50 (line 11).

67

CASL-U-2014-0038-000

(a) (b)

Figure 5.7: Evolutionary algorithm optimization example: 50 design points in the (a) initial and
(b) final populations selected by the evolutionary algorithm.

The algorithm will take at most 100 iterations comprising no more than 2000 function evaluations
(lines 7 and 8). The EA software available in Dakota provides the user with much flexibility in
choosing the settings used in the optimization process. The details of all the settings are not
discussed here; see [2] and [17].

On completion, the file cantilever opt ea.dat provides a listing of the design parameter
values and objective function values for all 2,000 design points evaluated during the running of the
EA. The final solution is shown in Figure 5.8.

<<<<< Function evaluation summary: 2007 total (2007 new, 0 duplicate)

<<<<< Best parameters =

2.3547960771e+00 w

3.3249245714e+00 t

4.0000000000e+04 R

2.9000000000e+07 E

5.0000000000e+02 X

1.0000000000e+03 Y

<<<<< Best objective function =

7.8295193371e+00

<<<<< Best constraint values =

-6.8024421496e+02

-3.4463344891e-03

<<<<< Best data captured at function evaluation 1982

Figure 5.8: Dakota output showing optimal point found by a global evolutionary algorithm.

EAs are better suited to optimization problems where conventional gradient-based optimization
fails, such as situations where there are multiple local optima and/or gradients are not available. In

68

CASL-U-2014-0038-000

Listing 5.4: Dakota input file showing global optimization on the cantilever beam problem with an
evolutionary algorithm.

strategy

2 single_method

tabular_graphics_data

4 tabular_graphics_file ’cantilever_opt_ea.dat ’

6 method

max_iterations = 100

8 max_function_evaluations = 2000

coliny_ea

10 seed = 11011011

population_size = 50

12 fitness_type merit_function

mutation_type offset_normal

14 mutation_rate 1.0

crossover_type two_point

16 crossover_rate 0.0

replacement_type chc = 10

18

model

20 single

22 variables

continuous_design = 2

24 upper_bounds 4.0 4.0

initial_point 2.5 2.5

26 lower_bounds 1.0 1.0

descriptors ’w’ ’t’

28 continuous_state = 4

initial_state 40000. 29.E+6 500. 1000.

30 descriptors ’R’ ’E’ ’X’ ’Y’

32 interface

direct

34 analysis_driver = ’mod_cantilever ’

36 responses

objective_functions = 1

38 # constraints assumed <= 0 unless bounds given

nonlinear_inequality_constraints = 2

40 descriptors = ’area ’ ’stress ’ ’displacement ’

no_gradients

42 no_hessians

69

CASL-U-2014-0038-000

such cases, the computational expense of an EA is warranted since other optimization methods are
not applicable or impractical. In many optimization problems, EAs often quickly identify promising
regions of the design space where the global minimum may be located. However, an EA can be
slow to converge to the optimum. For this reason, it can be an effective approach to combine the
global search capabilities of an EA with the efficient local search of a gradient-based algorithm in
a hybrid optimization strategy. In this approach, the optimization starts by using a few iterations
of an EA to provide the initial search for a good region of the parameter space (low objective
function and/or feasible constraints), and then it switches to a gradient-based algorithm (using the
best design point found by the EA as its starting point) to perform an efficient local search for an
optimum design point. More information on this hybrid approach is provided in the “Strategy”
chapter of the Dakota User’s Manual [1].

Another effective method for global optimization, especially for costlier computational models,
is the Efficient Global Optimization (EGO) approach. This is discussed in the section “Efficient
Global Minimization” of the Dakota User’s Manual [1].

5.3 Summary and Additional Approaches

In selecting an optimization method, important considerations include the type of variables in
the problem (continuous, discrete, mixed), whether a global search is needed or a local search
is sufficient, and the required constraint support (unconstrained, bound constrained, or generally
constrained). Less obvious, but equally important, considerations include the efficiency of conver-
gence to an optimum (i.e., convergence rate) and the robustness of the method in the presence of
challenging design space features (e.g., nonsmoothness).

Table 5.2 provides a more extensive reference for selecting from among all of Dakota’s optimiza-
tion methods. Here blank fields inherit the values from above. With respect to constraint support,
the methods with more advanced constraint support are also applicable to the lower constraint
support levels; they are listed only at their highest level of constraint support for brevity. For
example, all methods listed as supporting nonlinear constraints also support bound constraints.

Because of the computational cost of running simulation models, surrogate-based optimization
(SBO) methods are often used to reduce the number of actual simulation runs. In SBO, a surrogate
or approximate model is automatically constructed by Dakota based on a limited number of simu-
lation runs. The optimization is then performed on the surrogate model. Dakota has an extensive
framework for managing a variety of local, multipoint, global, and hierarchical surrogates for use
in optimization. Finally, sometimes there are multiple objectives that one may want to optimize
simultaneously instead of a single scalar objective. In this case, one may employ multi-objective
methods described in “Optimization Capabilities” in the Dakota User’s Manual to either form a
single composite objective, or assess the trade-off between multiple objectives directly.

70

CASL-U-2014-0038-000

Table 5.2: Detailed guidelines for selecting from among all Dakota optimization methods. Blank
fields inherit the values from above.

Method Desired Problem Applicable Methods
Classification Characteristics

smooth; continuous variables optpp cg
no constraints

smooth; continuous variables; dot bfgs, dot frcg, conmin frcg
bound constraints

Gradient-Based smooth; continuous variables; npsol sqp, nlpql sqp, dot mmfd,
Local bound constraints, dot slp, dot sqp, conmin mfd,

linear and nonlinear constraints optpp newton, optpp q newton,
optpp fd newton,

weighted sums (multiobjective),
pareto set strategy (multiobjective)

Gradient-Based smooth; continuous variables; hybrid strategy,
Global bound constraints, multi start strategy

linear and nonlinear constraints

nonsmooth; continuous variables; optpp pds
bound constraints

nonsmooth; continuous variables; asynch pattern search,
Derivative-Free bound constraints, coliny cobyla, coliny pattern search,

Local linear and nonlinear constraints coliny solis wets,
surrogate based local

nonsmooth; continuous variables;
discrete variables; bound constraints, mesh adaptive search

nonlinear constraints

nonsmooth; continuous variables; ncsu direct
bound constraints

nonsmooth; continuous variables; coliny direct, efficient global,
Derivative-Free bound constraints, surrogate based global

Global linear and nonlinear constraints

nonsmooth; continuous variables, coliny ea, soga,
discrete variables; bound constraints, moga (multiobjective)

linear and nonlinear constraints

71

CASL-U-2014-0038-000

Chapter 6

Uncertainty Quantification

At a high level, uncertainty quantification (UQ) constitutes the process of characterizing input,
numerical, and experimental uncertainties – consisting of both measurement errors and variability
in replicate data, propagating these uncertainties through a computational model, and performing
statistical or interval assessments on the resulting responses. This process determines the effect of
uncertainties and assumptions on model responses or quantities of interest (QoI). In Section 6.1,
we summarize techniques to propagate input uncertainties through models whereas in Section 6.2,
we discuss Bayesian techniques to quantify input uncertainties.

For this discussion, inputs collectively refer to model parameters, initial conditions, boundary
conditions, or exogenous forces. For models in which inputs are derived from closure, constitutive
or phenomenological relations, one must employ model calibration techniques to estimate means,
moments, or ultimately probability density functions (PDF) for these calibrated inputs based on
experimental data or high-fidelity codes. This is often termed inverse uncertainty quantification.
For CASL applications, inputs requiring calibration include cross-section values, closure and phe-
nomenological parameters, and initial and boundary conditions.

The quantification of response or output uncertainties facilitates optimal design and decision
making and is necessary to ensure robustness, performance or safety margins. For example, outputs
specified for emergency core cooling systems include peak clad temperatures and maximum local
cladding oxidation. The manner in which output statistics are employed depends on the application.
For the assessment of design margins, the sample mean x̄ and sample variance s2 can be used to
construct 2σ confidence intervals x̄± 2s whereas a predictive distribution for the output might be
compared to replicate data to assess validation.

Wilks’ formula constitutes a classical approach for assessing output uncertainty [29, 41]. In this
coverage approach, the code is run N times for randomly selected input values chosen from expert-
specified intervals. The outputs are then ranked to establish tolerance bounds for the response.
This approach has the advantage that the number of required code evaluations is independent of
the number of parameters. However, the resulting tolerance bounds can be overly conservative and
the techniques detailed in Sections 6.1 and 6.2 yield more precise bounds or densities for inputs
and outputs.

UQ is related to the sensitivity analysis, detailed in Chapter 3, in that the common goal is to
gain an understanding of how variations in the parameters or inputs affect the response functions
of the engineering design problem. However, for UQ, some or all of the components of the param-
eter vector are considered to be uncertain as specified by particular probability distributions (e.g.,

72

CASL-U-2014-0038-000

normal, exponential, extreme value), or other uncertainty structures. By assigning specific distri-
butional structure to the inputs, distributional structure for the outputs (i.e., response statistics)
can be inferred. UQ can thus be defined as the process of quantifying the imprecision of computed
model responses or quantities of interest whereas sensitivity analysis ascertains how uncertainty in
model outputs can be apportioned to uncertainties in model inputs when taken either singly or in
combination over the range of input values.

6.1 Uncertainty Propagation

Whereas Dakota provides a number of options for propagating uncertainties through models, we
focus on sampling and stochastic polynomial methods. The selection of these techniques to employ
can be based on the following criteria:

• Sampling methods are applicable for nonsmooth and/or multi-modal response functions and
general input densities including those for correlated parameters, initial conditions, boundary
conditions or exogenous forces. Since sampling methods require numerous model evaluations
– e.g., hundreds to millions – they necessitate that models be efficient to evaluate or require
the use of suitable surrogate models. Sampling methods yield response samples, which can be
post-processed – e.g., using kernel density estimation (kde) routines – to construct response
densities.

• Stochastic polynomial methods require smooth response functions. Stochastic collocation
(SC) methods are applicable for general input densities whereas nonintrusive polynomial
chaos expansions (PCE) require the specification or construction of orthogonal polynomials.
For normal or uniform input densities, Hermite or Legendre polynomials are employed. For
densities that do not correspond to members in the Askey family of polynomials, Dakota
provides the capability of employing empirical histograms to generate orthogonal polynomials.
Evaluation of the quantity of interest often necessitates that inputs are mutually independent,
which is generally not the case, but can often be achieved through Nataf transformations.
These methods utilize Dakota sparse grid routines to provide highly efficient evaluation of
response moments and Sobol global sensitivity indices.

We note that Dakota provides a number of other techniques – including local and global relia-
bility methods, interval methods, and mixed UQ algorithms – to propagate uncertainties through
models. Readers are referred to the “Uncertainty Quantification Capabilities” chapter of [1] for
details about these methods.

We do not differentiate between aleatoric uncertainties, which are inherent to a problem or
experiments and are intrinsically probabilistic in nature, and epistemic uncertainties, which are
due to lack of knowledge. We refer readers to [34] for details regarding the nature of these un-
certainties and to the “Uncertainty Quantification Capabilities” chapter of [1] for a description of
how Dakota algorithms accommodate these two classes of uncertainties. Further details regarding
various uncertainty propagation techniques are provided in [34, 37].

6.1.1 Sampling Methods

Sampling-based methods are the most robust uncertainty techniques available, are applicable to
almost all simulations, and possess rigorous error bounds. Consequently, they should be used when-

73

CASL-U-2014-0038-000

ever the function is relatively inexpensive to compute and adequate sampling can be performed. In
the case of computationally expensive simulations, however, the number of function evaluations re-
quired by traditional techniques such as Monte Carlo and Latin hypercube sampling (LHS) quickly
becomes prohibitive, especially if tail statistics are needed. We note that the issues associated with
tail statistics can be mitigated through the use of importance sampling.

Alternatively, one can apply the traditional sampling techniques to a surrogate function ap-
proximating the expensive computational simulation. However, if this approach is selected, the
user should be aware that it is difficult to assess the accuracy of the results. Unlike the case of
surrogate-based local minimization, there is no simple pointwise calculation to verify the accuracy
of the approximate results. This is due to the functional nature of uncertainty quantification; i.e.,
the accuracy of the surrogate over the entire parameter space needs to be considered, not just
around a candidate optimum as in the case of surrogate-based local optimization. This issue es-
pecially manifests itself when trying to estimate low probability events such as the catastrophic
failure of a system.

Due to the computational complexity of CASL codes, sampling methods will generally need
to be applied to surrogate models rather than physics-based codes. Hence the issues associated
with establishing the accuracy of the surrogate must be addressed or the accuracy of the surrogate-
based sampling results verified for these codes. Techniques to establish surrogate accuracy include
“leave-one-out” cross-validation for Gaussian processes [6] and the Dakota K-fold cross-validation
capability, which includes “leave-one-out.” Details regarding the use of the Dakota sampling capa-
bility are provided in Section 6.1.5.

6.1.2 Stochastic Polynomial Methods

Stochastic polynomial methods comprise a second class of forward propagation techniques, which
are available in Dakota. The development of these techniques mirrors that of deterministic Galerkin
and finite element analysis utilizing the notions of projection, collocation, orthogonality, and weak
convergence [12, 13]. Rather than providing point estimates, they form an approximation to the
functional relationship between random inputs and response functions, which provides a represen-
tation of output uncertainties for multi-code simulations. Expansion methods include nonintrusive
polynomial chaos expansions (PCE), which employ multivariate orthogonal polynomials that are
tailored to particular input probability distributions, and stochastic collocation (SC), which em-
ploys multivariate interpolation polynomials.

For certain applications, sampling-based models can be efficiently combined with stochastic
polynomial methods. For example, it is often advantageous to employ Latin hypercube sampling
to construct a surrogate, which is subsequently employed with a regression-based nonintrusive
polynomial chaos expansion.

Nonintrusive Polynomial Chaos Expansions (PCE)

To motivate nonintrusive PCE methods, which for certain implementation regimes are also
termed pseudo-spectral or discrete projection methods, we consider a parameter-dependent response
Y (X) where X ∈ <M . For random inputs X, this response is represented by the truncated
expansion

Y (X) =

J∑
j=0

αjΨj(X) (6.1)

74

CASL-U-2014-0038-000

where Ψj(X) are polynomials that are orthogonal with respect to inner products corresponding to
common probably density functions. For example, Hermite and Legendre polynomials with weights
e−x

2/2 and 1 are respectively used to represent single-variate normal and uniform distributions.
As detailed in the “Stochastic Expansion Methods” chapter of the Dakota Theory Manual [3]
and Chapter 10 of [34], tensored polynomials are constructed as basis functions for multivariate
densities.

If we denote the density by ρ(x) and note that Ψ0(X) = 1, if follows that

E[Ψ0(X)] = 1

and

E[Ψi(X)Ψj(X)] =

∫
Γ

Ψi(x)Ψj(x)ρ(x)dx

= δijγi

where Γ = [0, 1]M for scaled Legendre polynomials, δij is the Kronecker delta and the normalization
factor is

γi = E[Ψ2
i (X)].

We note that γi can be computed analytically for each polynomial in the Askey family, which
includes Hermite and Legendre polynomials.

Based on these orthogonality properties, it follows that the mean and variance of Y are

E[Y (X)] = α0

Var[Y (X)] =
J∑
j=1

α2
jγj .

(6.2)

Hence these values, as well as higher order moments, can be computed very efficiently once one has
constructed the coefficients αj .

For the nonintrusive PCE method, one takes the weighted inner product of (6.1) with respect
to Ψj and enforces orthogonality to obtain

αj =
1

γj

∫
Γ
Y (x)Ψj(x)ρ(x)dx .

Hence the determination of the coefficients αj requires numerical quadrature over Γ ⊂ <M . In
Dakota, this is achieved using tensored Gaussian or sparse grid quadrature techniques. The evalu-
ation of

αj ≈
1

γj

Nq∑
i=1

Y (xi)Ψj(xi)ρ(xi)wi (6.3)

thus employs codes nonintrusively, or as a black box, to evaluate the response at parameter values xi.
Details regarding this method can be found in Chapter 10 of [34]. Alternatively, one can determine
coefficients using Dakota’s linear regression capabilities as detailed in the “Stochastic Expansion
Methods” chapter of the Dakota Theory Manual [3]. The implementation of this technique in
Dakota is illustrated in Section 6.1.5.

75

CASL-U-2014-0038-000

Stochastic Collocation (SC)

In the stochastic collocation method, one represents the response for random inputs X as

Y (X) =

J∑
j=1

rjLj(X)

where rj = Y (xj) is the response value at the interpolation point xj and Lj(x) is a Lagrange
polynomial. In 1-D, the Lagrange polynomial can be represented as

Lj(x) =

J∏
k=1
k 6=j

x− xk
xj − xk

which highlights the property that Lj(xi) = δij . For moderate parameter dimensionality, Dakota
provides the capability for implementing multivariate interpolation on Smolyak sparse grids. As
detailed in the “Stochastic Expansion Methods” chapter of the Dakota Theory Manual [3], Dakota
also provides the capability for implementing local or global interpolating polynomials and either
value-based or gradient-enhanced representations. The implementation of stochastic collocation in
Dakota is illustrated in Section 6.1.5.

Table 6.1 provides a reference for choosing a Dakota propagation method or strategy based on
the properties of the model.

Table 6.1: Guidelines for uncertainty propagation method selection.

Method Desired Problem Applicable Methods
Classification Characteristics

Sampling Nonsmooth and/or multi-modal sampling
response functions; general densities;

computationally efficient models or surrogates

Stochastic Smooth response functions; can polynomial chaos
Polynomial be combined with Dakota stoch collocation

sparse grid routines

6.1.3 Verification

Verification comprises a critical component of uncertainty propagation when quantifying response
variability. For many problems, one or more of the following steps can be employed to verify
response uncertainties. The use of this verification strategy is illustrated in Section 6.1.5.

(i) Compare the mean, variance, skewness and kurtosis provided by noninvasive PCE and stochas-
tic collocation.

(ii) Construct the response densities using the sampling methods discussed in Section 6.1.1 and
compare the resulting moments with those computed in (i).

76

CASL-U-2014-0038-000

(iii) For linearly parameterized problems with uncorrelated Gaussian inputs Xi ∼ N (µi, σ
2
i), the

response Y =
∑N

i=1 aiXi is normally distributed with mean and variance

E(Y) =
N∑
i=1

aiµi , var(Y) =
N∑
i=1

a2
iσ

2
i . (6.4)

These moments can be compared with those constructed in (i) and (ii).

6.1.4 Prediction Intervals

One goal when propagating uncertainties is to construct credible or prediction intervals for the
model response or quantity of interest. This can be achieved using the methods of Section 6.1.1
to sample from input densities, constructed either experimentally or using the Bayesian model cal-
ibration techniques detailed in Section 6.2. The propagation of solely input density information
yields credible intervals, which quantify the accuracy of the model. The simultaneous propagation
of input and experimental uncertainties – e.g., using the statistical model (6.5) – yields prediction
intervals, which quantify the probability of observing the next experimental measurement or nu-
merical simulation. For example, the interval (a, b) is a 95% prediction interval if the probability
that a future experimental observation yi falls within (a, b) is at least 0.95. For this reason, pre-
diction intervals are typically preferable to credible intervals when experimentally validating model
behavior. Details regarding posterior predictive distributions can be found in [11].

6.1.5 Uncertainty Propagation: Cantilever Beam Example

We illustrate the sampling and stochastic polynomial methods for the cantilever beam example
detailed in Section 2.1. Specifically, we illustrate the use of random sampling, noninvasive polyno-
mial chaos expansions, and stochastic collocation to propagate parameter uncertainties through the
model to quantify uncertainties in the output area, stress, and displacement. In all cases, parameters
were assumed to have the normal distributions R ∼ N (4.0E5, 4.0E6), E ∼ N (2.9E7, 2.1025E12),
X ∼ N (5.0E2, 1.0E4) and Y ∼ N (1.0E3, 1.0E4). Additional details regarding the performance of
random sampling, PCE, and stochastic collocation, for this example, are provided in [37].

Random Sampling

We first illustrate the use of random sampling to construct densities for the output based on 106

samples from the assumed normal input distributions. The input file is shown in Listing 6.1.
An excerpt of the random sampling output is shown in Figure 6.1. First the mean, standard

deviation, skewness, and kurtosis moments are calculated for each of the three response functions,
as well as 95% confidence intervals for each response mean and standard deviation. Correlation
matrices among all inputs and outputs are provided to determine the degree of linear relationships
among variables. Finally, the full output provides a listing of CDF probabilities.

Nonintrusive Polynomial Chaos Expansions (PCE)

A typical Dakota input file for performing uncertainty propagation using nonintrusive PCE is
shown in Listing 6.2. In this example, we compute CDF probabilities for 17 probability levels
of the cantilever beam equations. Due to the low parameter dimensionality, we select Gaussian

77

CASL-U-2014-0038-000

Listing 6.1: UQ input for random sampling.

strategy

2 tabular_graphics_data

tabular_graphics_file = ’cantilever_sampling.dat ’

4 single_method

6 method

sampling

8 sample_type random

samples = 1000000

10 seed = 17

response_levels = 1. 5. 10.

12 10000. 20000. 40000.

1. 2. 3.

14

model

16 single

18 variables

active uncertain

20 continuous_design = 2

initial_point 2.5 2.5

22 descriptors ’w’ ’t’

normal_uncertain = 4

24 means = 40000. 29.E+6 500. 1000.

std_deviations = 2000. 1.45E+6 100. 100.

26 descriptors = ’R’ ’E’ ’X’ ’Y’

28 interface

analysis_driver = ’mod_cantilever ’

30 direct

32 responses

response_functions = 3

34 descriptors = ’area ’ ’stress ’ ’displacement ’

no_gradients

36 no_hessians

78

CASL-U-2014-0038-000

Statistics based on 1000 samples:

Moment-based statistics for each response function:

Mean Std Dev Skewness Kurtosis

area 6.2500000000e+00 0.0000000000e+00 0.0000000000e+00 -3.0000000000e+00

stress 1.7353650406e+04 5.8085356413e+03 -6.5053618765e-03 7.3520733236e-02

displacement 1.7161216049e+00 4.1203461736e-01 1.3498700788e-01 -1.6987570074e-02

95% confidence intervals for each response function:

LowerCI_Mean UpperCI_Mean LowerCI_StdDev UpperCI_StdDev

area 6.2500000000e+00 6.2500000000e+00 0.0000000000e+00 0.0000000000e+00

stress 1.6993203553e+04 1.7714097260e+04 5.5646488747e+03 6.0749462045e+03

displacement 1.6905529262e+00 1.7416902836e+00 3.9473425169e-01 4.3093273234e-01

Simple Correlation Matrix among all inputs and outputs:

R E X Y area stress displacement

R 1.00000e+00

E -1.09891e-03 1.00000e+00

X -1.89011e-03 3.84943e-04 1.00000e+00

Y 2.28006e-03 1.47231e-03 -1.28899e-04 1.00000e+00

area 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00

stress -3.46903e-01 1.62695e-03 6.50987e-01 6.74942e-01 0.00000e+00 1.00000e+00

disp. 1.99216e-03 -4.87018e-01 3.80836e-01 7.81233e-01 0.00000e+00 7.74982e-01 1.00000e+00

Partial Correlation Matrix between input and output:

area stress displacement

R -0.00000e+00 -1.00000e+00 5.02670e-03

E -0.00000e+00 -1.67347e-09 -9.87430e-01

X -0.00000e+00 1.00000e+00 9.79611e-01

Y -0.00000e+00 1.00000e+00 9.95042e-01

Simple Rank Correlation Matrix among all inputs and outputs:

R E X Y area stress displacement

R 1.00000e+00

E 1.29417e-02 1.00000e+00

X -1.02171e-02 3.68951e-03 1.00000e+00

Y 3.49896e-03 5.36687e-03 4.26256e-03 1.00000e+00

area 4.84427e-02 3.11778e-02 -2.69348e-02 -4.07852e-02 1.00000e+00

stress -3.31948e-01 -7.20001e-08 6.39440e-01 6.52457e-01 -6.90457e-02 1.00000e+00

disp. -1.33517e-03 -4.74628e-01 3.68797e-01 7.57213e-01 -5.19435e-02 7.57396e-01 1.00000e+00

Partial Rank Correlation Matrix between input and output:

area stress displacement

R 4.79912e-02 -7.97285e-01 2.39053e-02

E 3.09448e-02 -6.40293e-03 -8.86932e-01

X -2.64483e-02 9.31104e-01 8.26712e-01

Y -4.10868e-02 9.34429e-01 9.49696e-01

Figure 6.1: Excerpt of UQ output for random sampling.

quadrature with a total of 57 function evaluations to compute the nonintrusive PCE coefficients
(6.3), using tensor product quadrature points. The tensor product generates all combinations of
values from each individual dimension so it is an all-way pairing of points. We note that one

79

CASL-U-2014-0038-000

would replace tensored Gaussian quadrature with sparse grid techniques for moderate parameter
dimensionality; e.g., M = 5 to approximately M = 40, depending on the regularity of the modeling
equations.

Once the expansion coefficients have been calculated, some statistics can be computed analyti-
cally – e.g., via (6.2) – whereas others must be evaluated numerically. For the numerical portion, the
input file specifies the use of 10000 samples, which will be evaluated on the expansion to compute
the CDF probabilities. We summarize in Figure 6.2 excerpts of the output. The full output lists
a summary of the PCE coefficients, which reproduce the function for a Hermite polynomial basis.
The analytic statistics for mean, standard deviation, and covariance are then presented for each of
the response functions: area, stress, and displacement. Finally, we note the numerical results for the
CDF probabilities based on 105 samples performed on the expansion. For example, approximately
50% of the displacement samples are determined to be less than or equal to 1.709 inches.

Stochastic Collocation

Here we illustrate the use of stochastic collocation built on an anisotropic sparse grid defined from
numerically-generated orthogonal polynomials; see Chapters 10 and 11 of [34] for details regarding
stochastic collocation. The input file is shown in Listing 6.3. In this example, we again compute
CDF probabilities of stress and displacement for varying response levels. This example requires
233 function evaluations to compute the interpolating polynomials used for stochastic collocation.

Once the expansion coefficients have been calculated, some statistics are available analytically
and others must be evaluated numerically. For the numerical portion, the input file specifies the
use of 10000 samples, which will be evaluated on the expansion to compute the CDF probabilities.
We summarize in Figure 6.3 excerpts from the output. We first note the moment statistics for
mean, standard deviation, skewness, and kurtosis computed by numerical integration (see the
“Analytic Moments” section in the “Stochastic Expansion Methods” chapter in the Dakota Theory
Manual [3]), where the numerical row corresponds to integration using the original response values
and the expansion row corresponds to integration using values from the interpolant. The response
covariance and global sensitivity indices (Sobol indices) are presented next. This example shows
that for stress, the variables R, X, and Y all play significant roles, but that the interactions between
them are relatively negligible. For displacement, E, X, and Y have significant influence, while the
interactions between E and X, E and Y , X and Y , and the three way interaction have significantly
less effect. Finally, in the full output, we see the numerical results for the CDF probabilities based
on 10000 samples performed on the expansion.

Method Verification

We illustrate here the verification techniques detailed in Section 6.1.3. We compile in Tables 6.2
and 6.3 the first four moments provided by random sampling, noninvasive PCE and stochastic
collocation. Additionally, since stress is a linear function of the normally distributed inputs X,Y
and R, the relations (6.2) can be used to compute analytic values for the stress moments.

We note that the moments for each of the three methods are in close agreement, with the
exception of the third and fourth moments in the stress output. Since the stress is linearly dependent
on the parameters, it is expected that the PCE and collocation methods should produce exact results
for these two moments, neglecting rounding error. By comparison, the skewness and kurtosis,

80

CASL-U-2014-0038-000

Listing 6.2: UQ input for nonintrusive polynomial chaos expansions.

1 # Dakota Input File: cantilever_uq_pce.in

3 strategy

single_method

5 tabular_graphics_data

tabular_graphics_file = ’cantilever_uq_pce.dat ’

7 graphics

9 method

polynomial_chaos

11 sparse_grid_level = 2 #non_nested

sample_type lhs

13 seed 12347

samples = 10000

15 num_probability_levels = 0 17 17

probability_levels =

17 .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95 .99 .999

.001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95 .99 .999

19 cumulative distribution

21 model

single

23

variables

25 active uncertain

continuous_design = 2

27 initial_point 2.5 2.5

descriptors ’w’ ’t’

29 normal_uncertain = 4

means = 40000. 29.E+6 500. 1000.

31 std_deviations = 2000. 1.45E+6 100. 100.

descriptors = ’R’ ’E’ ’X’ ’Y’

33

interface

35 direct

analysis_driver = ’mod_cantilever ’

37

responses

39 response_functions = 3

descriptors = ’area ’ ’stress ’ ’displacement ’

41 no_gradients

no_hessians

81

CASL-U-2014-0038-000

Statistics derived analytically from polynomial expansion:

Moment-based statistics for each response function:

Mean Std Dev Skewness Kurtosis

stress

expansion: 1.7600000000e+04 5.7871581973e+03

numerical: 1.7600000000e+04 5.7871581973e+03 9.4100742175e-15 6.2172489379e-15

displacement

expansion: 1.7201243431e+00 4.0644795983e-01

numerical: 1.7201243431e+00 4.0644787032e-01 1.5009952217e-01 4.9005496977e-02

Covariance matrix for response functions:

[[7.3191614098e-30 5.3786836096e-13 6.5282177146e-17

5.3786836096e-13 3.3491200000e+07 1.8163897036e+03

6.5282177146e-17 1.8163897036e+03 1.6519994405e-01]]

Cumulative Distribution Function (CDF) for stress:

Response Level Probability Level Reliability Index General Rel Index

-------------- ----------------- ----------------- -----------------

2.4921421856e+02 1.0000000000e-03

4.1489075797e+03 1.0000000000e-02

7.9708753041e+03 5.0000000000e-02

1.0090342657e+04 1.0000000000e-01

1.1589780322e+04 1.5000000000e-01

1.2731567123e+04 2.0000000000e-01

1.4564078343e+04 3.0000000000e-01

1.6151010310e+04 4.0000000000e-01

1.7689441098e+04 5.0000000000e-01

1.9129203866e+04 6.0000000000e-01

2.0683233939e+04 7.0000000000e-01

2.2457356004e+04 8.0000000000e-01

2.3589089220e+04 8.5000000000e-01

2.4920875151e+04 9.0000000000e-01

2.7044322788e+04 9.5000000000e-01

3.0752664401e+04 9.9000000000e-01

3.5331778223e+04 9.9900000000e-01

Cumulative Distribution Function (CDF) for displacement:

Response Level Probability Level Reliability Index General Rel Index

-------------- ----------------- ----------------- -----------------

5.8392829293e-01 1.0000000000e-03

8.2796204947e-01 1.0000000000e-02

1.0598405267e+00 5.0000000000e-02

1.2097152423e+00 1.0000000000e-01

1.2968601525e+00 1.5000000000e-01

1.3747889667e+00 2.0000000000e-01

1.4999245316e+00 3.0000000000e-01

1.6076201989e+00 4.0000000000e-01

1.7093348267e+00 5.0000000000e-01

1.8118345186e+00 6.0000000000e-01

1.9241773807e+00 7.0000000000e-01

2.0596369386e+00 8.0000000000e-01

2.1417150361e+00 8.5000000000e-01

2.2453314112e+00 9.0000000000e-01

2.3964502080e+00 9.5000000000e-01

2.7290918315e+00 9.9000000000e-01

3.0882954345e+00 9.9900000000e-01

Figure 6.2: Excerpt of UQ output for nonintrusive polynomial chaos expansion.

82

CASL-U-2014-0038-000

Listing 6.3: UQ input for stochastic collocation.

1 strategy

single_method

3 tabular_graphics_data

tabular_graphics_file = ’cantilever_uq_sc.dat ’

5

method

7 stoch_collocation

sparse_grid_level = 3

9 samples = 10000 seed = 12347 rng rnum2

response_levels = 1. 5. 10. 15. 20. 50.

11 1. 10. 5000. 10000. 50000. 100000.

.1 1. 2. 3. 5. 10.

13 variance_based_decomp

output silent

15

variables

17 active uncertain

continuous_design = 2

19 initial_point 2.5 2.5

descriptors ’w’ ’t’

21 normal_uncertain = 4

means = 40000. 29.E+6 500. 1000.

23 std_deviations = 2000. 1.45E+6 100. 100.

descriptors = ’R’ ’E’ ’X’ ’Y’

25

interface

27 direct

analysis_driver = ’mod_cantilever ’

29

responses

31 response_functions = 3

descriptors = ’area ’ ’stress ’ ’displacement ’

33 no_gradients

no_hessians

83

CASL-U-2014-0038-000

Statistics derived analytically from polynomial expansion:

Moment-based statistics for each response function:

Mean Std Dev Skewness Kurtosis

stress

expansion: 1.7600000000e+04 5.7871581973e+03 -1.3819173712e-14 5.3290705182e-15

numerical: 1.7600000000e+04 5.7871581973e+03 -1.8416777990e-14 5.7731597281e-15

displacement

expansion: 1.7201241681e+00 4.0644979045e-01 1.5036497320e-01 6.8782204635e-02

numerical: 1.7201241681e+00 4.0644979045e-01 1.5036497320e-01 6.8782204635e-02

Covariance matrix for response functions:

[[7.8886090522e-31 -3.2350298255e-26 -6.5675038652e-31

-3.2350298255e-26 3.3491200000e+07 1.8163966854e+03

-6.5675038652e-31 1.8163966854e+03 1.6520143216e-01]]

Global sensitivity indices for each response function:

stress Sobol indices:

Main Total

1.1943435888e-01 1.1943435888e-01 R

-4.9831897744e-14 1.3881742943e-13 E

4.4028282056e-01 4.4028282056e-01 X

4.4028282056e-01 4.4028282056e-01 Y

Interaction

-2.3136238238e-14 R E

7.1188425348e-15 R X

7.1188425348e-14 E X

-8.1866689150e-14 R Y

1.2635945499e-13 E Y

-9.0765242319e-14 X Y

1.6017395703e-14 R E X

2.4915948872e-14 R E Y

1.8508990590e-13 R X Y

-2.6695659506e-14 E X Y

displacement Sobol indices:

Main Total

3.0376298835e-13 -1.3978473800e-13 R

2.4260687756e-01 2.4452448915e-01 E

1.5243149082e-01 1.5378097334e-01 X

6.0208388530e-01 6.0457471845e-01 Y

Interaction

2.4193512347e-13 R E

-2.5537596366e-13 R X

3.8691316858e-04 E X

-8.0376224352e-13 R Y

1.5282637946e-03 E Y

9.6013473508e-04 X Y

-1.6666641839e-13 R E X

1.9623626681e-13 R E Y

3.4408550893e-13 R X Y

2.4346209458e-06 E X Y

Figure 6.3: Excerpt of UQ output for stochastic collocation.

84

CASL-U-2014-0038-000

obtained with random sampling, are non-negligible but have values that are still five to seven
orders of magnitude smaller than the sample mean and variance.

Stress

Mean Std. Deviation Skewness Kurtosis

Analytic 1.760e+04 5.787e+03 – –

Sampling 1.735e+04 5.809e+03 -6.505e-03 7.352e-02

PCE 1.760e+04 5.787e+03 9.410e-15 6.217e-15

Collocation 1.760e+04 5.787e+03 -1.842e-14 5.773e-15

Table 6.2: Comparison of moments for stress from random sampling, polynomial chaos expansion,
and stochastic collocation methods.

Displacement

Mean Std. Deviation Skewness Kurtosis

Sampling 1.716 4.120e-01 1.350e-01 -1.700e-02

PCE 1.720 4.064e-01 1.501e-01 4.901e-02

Collocation 1.720 4.064e-01 1.504e-01 6.878e-02

Table 6.3: Comparison of moments for displacement from random sampling, polynomial chaos
expansion, and stochastic collocation methods.

The stress density constructed by random sampling is compared in Figure 6.4(a) with normal
densities whose mean and variance (6.2) are constructed using coefficients αj determined by nonin-
trusive PCE or stochastic collocation. The displacement density constructed by random sampling
is plotted in Figure 6.4(b). We cannot compare to Gaussian representations with mean and vari-
ance computed using nonintrusive PCE or collocation coefficients since the nonlinear displacement
dependence on inputs yields a non-Gaussian output as demonstrated by the magnitude of the
skewness and kurtosis coefficients in Table 6.3. However, we could employ the nonintrusive PCE
or collocation representations as surrogate models, which could subsequently be used with random
sampling to more efficiently construct the non-Gaussian displacement density.

6.2 Bayesian Model Calibration

We noted in the introduction to this chapter that uncertainty quantification is broadly comprised
of two steps: (i) quantification of uncertainties associated with models, inputs and experiments,
and (ii) propagation of these uncertainties through models to quantify uncertainties in responses
or quantities of interest. Here inputs refer to model parameters, initial conditions, boundary con-
ditions or exogenous forces. We discuss here techniques to calibrate inputs derived from closure,
constitutive or phenomenological relations for which values derived from fundamental principles
are lacking.

The deterministic calibration techniques detailed in Chapter 5 provide point estimates for cali-
bration inputs, but generally no measure of uncertainty. An exception is gradient-based methods,
which produce asymptotic 95% confidence intervals for each input. The usefulness of these intervals

85

CASL-U-2014-0038-000

−1 0 1 2 3 4 5
x 104

0

1

2

3

4

5

6

7x 10−5

Stress (psi)

PD
F

Sampling
PCE
Collocation

0 1 2 3 40

0.2

0.4

0.6

0.8

1

Displacement (in)

PD
F

(a) (b)

Figure 6.4: (a) Stress density constructed by random sampling and normal densities with mean
and variance (6.2) computed using coefficients αj determined by nonintrusive PCE and stochastic
collocation. (b) Displacement density constructed by random sampling.

is tied to the validity of asymptotic assumptions applied to the problem at hand. As noted in the
introduction to this chapter, approaches such as Wilks’ formula employ uniform input distributions,
which are generally based on expert opinion. These intervals are often based on qualitative, rather
than quantitative, knowledge and hence they are typically conservative.

Bayesian inference provides a framework for probabilistic model calibration based on the as-
sumption that calibration inputs are random variables having associated PDFs. These PDFs quan-
tify both the support, or admissible parameter values, and the plausibility of each admissible
parameter value. In Bayesian model calibration, one employs a likelihood, which incorporates mea-
sured data and computed model information, to update prior density information to obtain a more
accurate posterior parameter density, which is consistent with experimental uncertainties.

Input densities or bounds, constructed in this manner, are tighter and contain more informa-
tion than uniform densities constructed solely to bound potential input values. Propagation of
these input densities using the sampling, nonintrusive polynomial chaos expansions, or stochas-
tic collocation techniques of Section 6.1 will provide reduced response uncertainties and hence
tighter robustness, performance or safety margins. For example, these densities could be employed
in Wilks’ formula to construct tighter tolerance bounds than those obtained using conservative,
non-inference based input densities.

We summarize pertinent details required for implementation of the methods and refer readers
to [20, 34] for additional examples and details regarding the theory and algorithms.

6.2.1 Direct Implementation of Bayes’ Relation

To set notation, we consider a random calibration parameter vector Θ = [Θ1, . . . ,ΘM] with the
realization θ = [θ1, . . . , θM]. We consider the statistical model

Di = yi(Θ) + εi , i = 1, . . . , N (6.5)

where D = [D1, . . . , DN] denotes unobserved (random) data, y(Θ) = [y1(Θ), . . . , yN (Θ)] is the
parameter-dependent model, and ε = [ε1, . . . , εN] is a random vector, which represents experimen-
tal and model errors. Throughout this discussion, we assume that εi are independently and iden-

86

CASL-U-2014-0038-000

tically distributed (iid) and εi ∼ N (0, σ2) where the experimental error variance σ2 is determined
experimentally or estimated through the inference procedure. We note that the model may addi-
tionally depend on spatial or temporal independent variables – e.g., yi = y(xi,Θ) or yi = y(ti,Θ) –
but we simplify notation by suppressing these latter dependencies since model calibration focuses
on uncertain parameters.

In Bayesian inference, one employs Bayes’ relation

π(θ|d) =
L(θ; d)π0(θ)∫

<M
L(θ; d)π0(θ)dθ

(6.6)

for observed data d to update a prior density π0(θ), using the likelihood L(θ; d), to obtain a more
informative posterior density π(θ|d).

Prior Density. The prior density π0(θ) incorporates any knowledge that one has about pa-
rameters prior to obtaining observations d. This could come from previous similar experiments or
analysis regarding similar models. If prior knowledge is of questionable accuracy, it is better to
use a noninformative prior, which is often taken as an improper uniform density posed on the pa-
rameter support. For example, one would employ π0(θ) = χ(0,∞)(θ) for positive parameters, where
χ(0,∞)(θ) is the characteristic function having a value of 1 for θ ∈ (0,∞) and 0 for θ ∈ (−∞, 0]. In
analyses assuming random experimental error variance σ2, a standard noninformative prior for σ2

is the Jeffreys prior π0(σ2) ∝ (1/σ2).

Likelihood Function. The likelihood L(θ; d) incorporates information provided by the sam-
ples and model and constitutes the mechanism through which data informs the posterior density.
The likelihood can be interpreted as quantifying the probability of obtaining the observations d for
a given value θ of the parameter Θ. The likelihood can generally be written as

L(θ; d) = f [y(θ)− d]

where the function f can be constructed to emphasize specific relations between the model and
data. For the statistical model (6.5) with iid errors εi that are normally distributed, εi ∼ N (0, σ2),
one employs the likelihood relation

L(θ; d) =
N∏
i=1

1

σ
√

2π
e−(di−yi(θ))2/2σ2

=
1

(2πσ2)N/2
e−SSq/2σ

2

(6.7)

where

SSq =

N∑
i=1

[di − yi(θ)]2

denotes the sum of squares error. We note that the likelihood and prior density must be specified
by users when employing sampling-based Bayesian algorithms.

Posterior Density. For small parameter dimensionsM and fixed or estimated σ2, the posterior
density can be constructed by employing quadrature rules to approximate the denominator of (6.6).

87

CASL-U-2014-0038-000

If we let wi and ζi denote the quadrature weights and points and assume a noninformative prior,
the posterior can be approximated by

π(θ|d) ≈ 1∑Nq
i=1 e

−(SSζi−SSq)/2σ2

wi
. (6.8)

The algebraic reformulation of the sum of squares in the denominator is made to avoid numerical
0/0 errors. For M = 1 through roughly 4, one can employ tensored Gaussian quadrature relations
whereas sparse grid techniques can be employed for moderate dimensionality. We refer to this as
direct Bayesian calibration.

6.2.2 Sampling Based Metropolis Algorithms

The difficulties associated with approximating the denominator of (6.6) or constructing marginal
posterior densities, for moderate to large dimensional parameter spaces, can be partiality cir-
cumvented by employing Markov chain Monte Carlo (MCMC) techniques. The goal with these
algorithms is to construct sampling-based chains whose stationary distribution is the posterior
distribution. The capabilities provided in Dakota and QUESO (Quantification of Uncertainty for
Estimation, Simulation, and Optimization) are: Delayed Rejection Adaptive Metropolis (DRAM),
DiffeRential Evolution Adaptive Metropolis (DREAM), and Gaussian Process Models for Simula-
tion Analysis (GPMSA).

Delayed Rejection Adaptive Metropolis (DRAM)

In Metropolis algorithms, parameters are sampled using a proposal function that reflects, to
the degree possible, the geometry of the unknown posterior density. For example, one can propose
candidate samples θ∗ ∼ N (θk−1, V), where θk−1 is the previous chain element and V is the proposal
covariance matrix. Proposed candidates are rejected or accepted with a probability that reflects
the degree to which candidates increase the likelihood. The goal is to construct a chain whose
stationary distribution is the posterior density.

DRAM is a variation of the Metropolis algorithm whose robustness is improved in two ways.
First, adaptation allows the algorithm to update the proposal covariance matrix to reflect accepted
candidates. In this manner, information acquired about the posterior distribution through accepted
chain candidates is used to update the proposal distribution. Secondly, delayed rejection provides
a mechanism for efficiently constructing alternative candidates when the current candidate is re-
jected. In combination, these two mechanisms provide the algorithm with substantial robustness
and efficiency [15]. We note that parallel versions of DRAM have recently been developed [35].

DiffeRential Evolution Adaptive Metropolis (DREAM)

There are various regimes for which DRAM algorithms are often not efficient. These include
problems in which posterior densities are multi-modal, highly complex, or have heavy tails. For
these cases, the single DRAM chain will be slow to traverse the posterior which can significantly
diminish its efficiency. Moreover, the computational overhead associated with complex models can
preclude the construction of burned-in single chains whereas one can often compute shorter parallel
chains using massively parallel architectures.

DREAM algorithms can circumvent some of these limitations. In these algorithms, candidates
are randomly generated using differential evolution algorithms. These algorithms are inherently

88

CASL-U-2014-0038-000

parallel and have the advantage that chains can learn from each other. Details are provided in
[40, 39].

Gaussian Process Models for Simulation Analysis (GPMSA)

GPMSA provides additional capability for Bayesian calibration. A key part of GPMSA is the
construction of a surrogate model or emulator from simulation runs collected at various settings
of input parameters; see Chapter 4 for details regarding the construction of surrogate models
including Gaussian process representations. The emulator is a statistical model of the system
response, and it is used to incorporate the observational data to improve system predictions and
constrain or calibrate the unknown parameters. The GPMSA code draws heavily on the theory
developed in the seminal Bayesian calibration paper by Kennedy and O’Hagan [22]. The particular
approach implemented in QUESO is described in [19]. GPMSA uses Gaussian process models in the
emulation, but for functional responses the emulator is actually a set of basis functions (e.g., from
a singular value decomposition) which have GPs as the coefficients. One major difference between
GPMSA and the QUESO implementation in Dakota is that the QUESO implementation does not
have an explicit “discrepancy” function δ which models the difference between the simulation and
the observational data results in addition to the error term ε, but GPMSA has a sophisticated model
for the discrepancy term. The GPMSA implementation in Dakota is presently an early prototype.
Details illustrating the performance of GPMSA for COBRA-TF are provided in Section 7.3.

Table 6.4 provides a reference for choosing a Bayesian model calibration method based on the
properties of the model.

Table 6.4: Guidelines for Bayesian method selection.

Method Desired Problem Applicable Methods
Classification Characteristics

DRAM Unimodal or weakly multi-modal posterior bayes calibration queso
densities; computationally efficient models

or surrogates

DREAM Multi-modal, complex or heavy tailed bayes calibration dream
posterior densities; inherently parallel

simulation codes

GPMSA Bayesian calibration using a Gaussian
process emulator; can accommodate certain

model discrepancy relations

6.2.3 Model Calibration and Surrogate Models

Dakota provides various capabilities for combining Bayesian model calibration algorithms with sur-
rogate models. The first is to employ a surrogate model or emulator when constructing chains and
posterior densities for inputs. For computationally intense codes, this will be necessary to acquire
the 103 to 105 model solutions required to burn-in chains and obtain a statistically relevant number
of chain elements. The QUESO GPMSA package provides one alternative for Bayesian calibration
using a Gaussian process emulator. Alternatively, the techniques of Chapter 4 can be used to con-
struct a surrogate model, which is then employed in Dakota-QUESO DRAM or Dakota DREAM

89

CASL-U-2014-0038-000

for Bayesian model calibration. One can apply Bayesian methods to a general surrogate by using a
model_pointer to point the Bayesian routine to a model of type surrogate. For the nonintrusive
PCE or stochastic collocation surrogates, discussed in Section 6.1, or Gaussian process surrogates,
one can shortcut this process by specifying the emulator as one of gaussian_process, pce, etc.

Once input distributions have been constructed, one can employ a surrogate model to imple-
ment the sampling methods discussed in Section 6.1.1 for quantities of interest that may not have
been used for calibration. Alternatively, one can employ the stochastic polynomial methods of
Section 6.1.2 to propagate uncertainties. We note that these comprise a form of interpolation
or regression-based surrogate models, which complement the kriging and Gaussian process-based
methods detailed in Chapter 4.

6.2.4 Verification

We summarize here a general framework for verifying model calibration results for CASL codes
implemented in VERA via Dakota. This framework is generally applicable to codes with nonlinear
parameter dependencies and experimental or synthetic data.

(i) Test algorithms using a linearly-parameterized model where analytic uncertainty relations
can be computed. Whereas this is not generally possible for CASL codes with nonlinear
parameter dependencies, code verification in this manner provides a first step for verifying
the capabilities of the model calibration framework and it may be used in certain nearly linear
operating regimes.

(ii) Compare to direct numerical implementation of Bayes’ formula (6.6) for small to moderate
input or parameter dimensions M ; e.g., M ≤ 20 to 30. For the likelihood relation (6.7) and
a noninformative prior π0(θ), this involves the evaluation of the relation (6.8). This also
comprises code verification.

(iii) Compare to other packages that implement DRAM to perform code-to-code verification.

(iv) Compare DRAM and DREAM results.

(v) Compare to sampling distributions provided by frequentist analysis. Whereas this approach
can guide verification, is must be used with care since the underlying assumptions for frequen-
tist and Bayesian inference differ significantly; see Chapter 4 of [34]. For example, asymptotic
analysis often yields Gaussian sampling distributions which will obviously be inaccurate if the
true distribution is highly non-Gaussian.

(vi) Check the convergence of the algorithms by increasing the number of quadrature points used
in (6.8) or number of iterations in DRAM or DREAM chains to establish solution verification.

6.2.5 Synthetic Data

One often employs synthetic data when testing model calibration algorithms since it provides a
regime in which errors are constructed, and hence known, and it can be employed when experimental
data is not readily available. We illustrate the construction of synthetic data for the statistical model
(6.5) but note that the procedure may vary for other statistical models.

90

CASL-U-2014-0038-000

For a nominal input θ̃ = [θ̃1, . . . , θ̃M], one calculates a nominal model response y(θ̃). For a
specified variance σ2, one then generates realizations ε1, . . . , εN from a normal distributionN (0, σ2),
which yields the synthetic data

di = y(θ̃) + εi , i = 1, . . . , N.

For multiple responses, the standard deviation σ is typically scaled by the magnitude of each
response in the manner illustrated in the cantilever beam example of Section 6.2.6.

6.2.6 Bayesian Calibration Examples

We illustrate here the performance and verification of the Dakota Bayesian model calibration pack-
ages for the cantilever beam example of Section 6.2.4 and linear verification example of Section 2.2
and Appendix A. The use of the algorithms for COBRA-TF is illustrated in Section 7.3.

Cantilever Beam

We employ the cantilever beam example of Section 2.1 to illustrate the implementation of
the DRAM and DREAM algorithms for Bayesian model calibration along with the verification
framework summarized in Section 6.2.4. The posterior parameter densities constructed in this
manner can subsequently be employed with the uncertainty propagation techniques detailed in
Section 6.1 to quantify response uncertainties.

Case I. We consider first the case in which the Young’s modulus E and width w are considered
unknown, the remaining parameters and inputs t, R, L,D0, X and Y are assumed known and fixed,
and data are taken to be displacement and stress measurements d and s. To construct synthetic
data using the techniques of Section 6.2.5, based on the assumption of independent and identically
distributed (iid) observation errors εi ∼ N (0, σ2), we compute the nominal displacement and stress
values

d̃ = 0.3086 , s̃ = 2.6667× 103

using the fixed and nominal input values in Table 6.5. The standard deviations are taken to be

σd = 0.1 · d̃ , σs = 0.1 · s̃

which yields the synthetic data compiled in Table 6.6 when observation errors εdi and εsi are drawn
from normal distributions N (0, σ2

d) and N (0, σ2
s).

t R L D0 X Y Ẽ w̃

3 4× 104 100 2.2535 500 100 2.85× 107 2.5

Table 6.5: Known values for t, R, L,D0, X, Y and nominal values Ẽ and w̃.

d (×10−1) 3.2075 2.7005 2.7939 2.8578 2.9298 2.9875 3.0903 2.1515 2.9454 3.4700

s (×103) 2.3838 3.0943 2.9959 2.6054 2.2650 2.5481 2.6251 2.7403 2.5970 2.7849

Table 6.6: Synthetic displacement and stress data employed for Bayesian model calibration.

91

CASL-U-2014-0038-000

We first employ the discretized Bayes relation (6.8) to directly construct marginal posterior den-
sities for E and w. Due to the simplicity of the algebraic model, we employ a tensored trapezoid
quadrature rule, which yields the convergence results compiled in Table 6.7. For more computation-
ally intensive models and codes, one would employ tensored Gaussian routines for low parameter
dimensions for M = 1 to approximately 6 and sparse grid techniques for moderate dimensionality
of M up to 30 or 40 where the upper limit depends on the regularity of the likelihood.

Nq µE σE µw σw

40 2.8751e+07 2.6685e+05 2.5024 1.2589e-02

80 2.8688e+07 1.6430e+05 2.5004 6.3164e-03

160 2.8693e+07 1.3087e+05 2.5001 3.6669e-03

320 2.8693e+07 1.3011e+05 2.5001 3.5940e-03

Table 6.7: Convergence of the direct numerical Bayes relation.

The direct results are compared with posterior densities constructed using the Dakota-QUESO
DRAM and Dakota DREAM algorithms in Figure 6.5. The corresponding input decks are provided
in Listings 6.4 and 6.5 and the means and standard deviations are compiled in Table 6.8. The joint
sample points plotted in Figure 6.6 demonstrate that E and w are correlated but identifiable.
For the DRAM algorithm, we constructed a chain of length 50,000 to ensure burn-in, whereas we
employed 10 chains of length 5,000 in the DREAM implementation. In both cases, we employed
noninformative priors. The matching of posterior densities and moments with those constructed
through direct computation verifies the accuracy of the DRAM and DREAM implementations. For
CASL applications, we recommend that, when possible, at least two of the techniques be compared
to verify the accuracy of the inference procedure.

µE σE µw σw

Direct 2.8693e+07 1.3011e+05 2.5001 3.5940e-03

DRAM 2.8694e+07 1.3101e+05 2.5002 3.5894e-03

DREAM 2.8697e+07 1.2866e+05 2.5002 3.5540e-03

Table 6.8: Posterior means and standard deviations provided by the direct, DRAM and DREAM
algorithms.

Case II. Secondly, we consider the case when E, t and w are considered uncertain and synthetic
data is taken to be displacement, stress and area measurements generated in a manner analogous to
Case I. The joint sample points constructed using Dakota-QUESO DRAM are plotted in Figure 6.7.
The nearly single-valued relation between t and w indicates that these parameters are essentially
nonidentifiable, which is a manifestation of nonunique input-output maps. This is consistent with
the observation that the productA = w·t appears in the displacement, stress and area relations. The
implementation of Bayesian calibration techniques for nonidentifiable parameter sets will generally
be problematic unless informative prior specification is provided. If such prior information is
not available, parameter selection based on global sensitivity analysis or reduced order modeling

92

CASL-U-2014-0038-000

Listing 6.4: Input for Dakota-QUESO DRAM.

1 # DAKOTA INPUT FILE - cantilever_bayes.in

3 strategy ,

single_method

5 tabular_graphics_data

7 method ,

bayes_calibration queso ,

9 samples = 50000 seed = 348

mcmc_type dram

11 rejection delayed

metropolis adaptive

13 output verbose

15 variables ,

proposal_covariance_scale 1.e10 1.e3

17 active design

continuous_design 2

19 upper_bounds 1.e8 10.0

initial_point 2.85e7 2.5

21 lower_bounds 1.e6 0.1

descriptors ’E’ ’w’

23 continuous_state 4

initial_state 3 40000 500 1000

25 descriptors ’t’ ’R’ ’X’ ’Y’

27 interface ,

system

29 analysis_driver = ’cantilever2 ’

31 responses ,

calibration_terms = 2

33 calibration_data_file = ’dakota_cant2_withsigma.dat ’

freeform

35 num_experiments = 1

num_replicates = 10

37 num_std_deviations = 2

descriptors = ’stress ’ ’displacement ’

39 no_gradients

no_hessians

93

CASL-U-2014-0038-000

Listing 6.5: Input for Dakota DREAM.

1 # DAKOTA INPUT FILE - cantilever_bayes.in

3 strategy ,

single_method

5 tabular_graphics_data

7 method ,

bayes_calibration dream ,

9 samples = 50000 seed = 348

chains = 10

11 output verbose

13 variables ,

active design

15 continuous_design 2

upper_bounds 1.e8 10.0

17 # Truth value is 2.85e7 2.5

lower_bounds 1.e6 0.1

19 descriptors ’E’ ’w’

continuous_state 4

21 initial_state 3 40000 500 1000

descriptors ’t’ ’R’ ’X’ ’Y’

23

interface ,

25 system

analysis_driver = ’cantilever2 ’

27

responses ,

29 calibration_terms = 2

calibration_data_file = ’dakota_cant2_withsigma.dat ’

31 freeform

num_experiments = 1

33 num_replicates = 10

num_std_deviations = 2

35 descriptors = ’stress ’ ’displacement ’

no_gradients

37 no_hessians

94

CASL-U-2014-0038-000

2.82 2.84 2.86 2.88 2.9 2.92

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−6

Stiffness

Direct

DREAM

DRAM

2.49 2.495 2.5 2.505 2.51
0

20

40

60

80

100

120

Width

Direct

DREAM

DRAM

(a) (b)

Figure 6.5: Marginal posterior densities for (a) E and (b) w generated through direct solution of
Bayes’ relation (6.8), Dakota-QUESO DRAM and Dakota DREAM.

2.84 2.86 2.88 2.9 2.92

x 10
7

2.49

2.495

2.5

2.505

2.51

w

E

DRAM

Figure 6.6: Joint posterior sample points for E and w constructed using the direct method (con-
tours) and DRAM (points).

techniques should be employed to determine the set of identifiable or influential parameters. Details
regarding parameter selection techniques can be found in Chapter 6 of [34].

General Linear Model Verification Tests

We illustrate here aspects of the general linear model verification test suite detailed in Chapter 2
and Appendix A. This constitutes step (i) in the verification framework detailed in Section 6.2.4.
All results were obtained using the QUESO implementation of DRAM.

95

CASL-U-2014-0038-000

2 2.2 2.4 2.6 2.8
2.6

2.8

3

3.2

3.4

3.6

Width

Th
ic

kn
es

s

2 2.2 2.4 2.6 2.8
2.8

2.85

2.9

2.95

3

3.05 x 107

Width

St
iff

ne
ss

2.6 2.8 3 3.2 3.4 3.6
2.8

2.85

2.9

2.95

3

3.05 x 107

Thickness

St
iff

ne
ss

Figure 6.7: Joint posterior sample points for E,w and t using DRAM.

The true values for parameters were constructed using the relations

βi0 = 0.4 + 0.05 sin

(
2π
i− 1

Nβ

)
, i = 1, . . . , Nβ,

λ0 = 1000, φ0 = 0.3.

The superscript i designates the components of β0.

Example 1. We first generate observations via (2.4) assuming uncorrelated noise, and then
calibrate the unknown variables for several choices of sample size and two separate cases of un-
known parameters. This allows verification of convergence of the calibrated variables β and (where
applicable) λ to their true values. We consider the cases:

• Case 1 (β unknown), Nβ = 1, N ∈ {1, 2, 3, 10, 102, 103, 104, 105, 106},

• Case 2 (β, λ unknown), Nβ = 1, N ∈ {2, 3, 10, 102, 103, 104, 105, 106},

• Case 1 (β unknown), Nβ = 10, N ∈ {10, 102, 103, 104},

• Case 2 (β, λ unknown), Nβ = 10, N ∈ {15, 102, 103, 104}.

Recall that specifying β as unknown is equivalent to stating that β is calibrated to the data. The
Nβ = 1 cases were computed using a DRAM chain with 20,000 iterates and the Nβ = 10 cases used
50,000 iterates.

96

CASL-U-2014-0038-000

To facilitate visualization for the Nβ = 10 case and provide an intuitive sense of scale, the
formulas

β̃m = 100
‖E (β)− β0‖2
‖β0‖2

, β̃v = 100

√
var (β)

‖β0‖2
,

λ̃m = 100
‖E (λ)− λ0‖2
‖λ0‖2

, λ̃v = 100

√
var (λ)

‖λ0‖2

were used to normalize the results in the plots. Here E(·) denotes the expectation or mean of the
chain, var(·) denotes the variance of the chain, and ‖ · ‖2 is the Euclidean norm of the argument.
The variables with the m subscript are errors in the expectations of the calibrated variables relative
to true values represented by the variables with subscript 0. The variables with the subscript v are
standard deviations of the chains relative to the magnitude of the true parameters, which provides
a more independent sense of the estimated uncertainty. Both of these variables are expressed
as percentages and are expected to converge to 0 with increasing sample size for uncorrelated
observation error. Figure 6.8 illustrates the results of the convergence studies plotted on logarithmic
axes. The downward trend of the plots confirms convergence of the computed quantities to 0 for
all considered cases.

We re-emphasize that the results obtained using DRAM are a sequence of iterates drawn from
a distribution that characterizes the confidence in the estimate of the unknown parameters. To
illustrate this point, histograms of the iterates obtained for Case 1 (unknown β) assuming a non-
informative prior are shown in Figure 6.9 for various sample sizes N . For this problem, the β
posterior densities are expected to be Gaussian as confirmed by the shapes of the histograms. As
the sample size N increases, the mean of the Gaussian posterior density approaches the true param-
eter β0 = 0.4 while the variance of the posterior density decreases. A Gaussian density converges
to a Dirac delta distribution (sometimes called an impulse function) as its variance decreases which
Figure 6.9 illustrates. This allows us to conclude that for the case where β is unknown, assigned a
noninformative prior, and calibrated to observations corrupted by uncorrelated noise, the estimate
for β tends towards the deterministic value β0 with increasing sample size N . This is consistent
with the intuition that confidence in an estimate increases as the number of data measurements
increases.

Example 2. Here we compare the posterior densities for the calibrated variables obtained via
DRAM with the exact expressions for the posterior densities computed analytically in Appendix A.
For this example, we used a sample size of N = 100 observations generated with equi-correlated
errors, and considered Nβ = 1 regression parameter. We computed the following cases:

• Case 1 (β unknown) with noninformative prior,

• Case 1 (β unknown) with Gaussian prior,

• Case 2 (β, λ unknown) with noninformative prior.

For the Gaussian prior case, we set the mean of the prior to µ0 = 0.6 and the variance to 2× 10−4.
The mean was chosen relatively far from the true value of β0 = 0.4 to distinguish the results from
those of the noninformative case, thus reducing the possibility of coincidentally correct output. All
cases were computed with parameter chains of 20,000 iterates.

97

CASL-U-2014-0038-000

100 10510−4

10−2

100

102

104

Sample Size N

R
el

at
iv

e
Er

ro
r (

%
)

` Mean Convergence

Case 1, N
`
=1

Case 2, N
`
=1

Case 1, N
`
=10

Case 2, N
`
=10

100 105

10−5

100

105

Sample Size N

Fr
ac

tio
n

of
 T

ru
e ̀

 (%
)

` Standard Deviation Convergence

Case 1, N
`
=1

Case 2, N
`
=1

Case 1, N
`
=10

Case 2, N
`
=10

(a) (b)

100 105

10−1

100

101

102

Sample Size N

R
el

at
iv

e
Er

ro
r (

%
)

h Mean Convergence

Case 2, N
`
=1

Case 2, N
`
=10

100 105

10−10

10−5

100

105

Sample Size N

Fr
ac

tio
n

of
 T

ru
e h

 (%
)

h Standard Deviation Convergence

Case 2, N
`
=1

Case 2, N
`
=10

(c) (d)

Figure 6.8: Convergence studies for the general linear model verification test suite with uncorrelated
noise and noninformative priors. (a) Percentage error in the mean of β relative to β0. (b) Standard
deviation of β expressed as percentage of β0. (c) Percentage error in mean of λ relative to λ0, and
(d) Standard deviation of λ expressed as percentage of λ0.

In Figure 6.10, we show the results for each case. As detailed in Appendix A, Case 1 yields a
Gaussian posterior density for β whereas the posterior for β in Case 2 is a t-distribution. However,
since N = 100 is a moderate sample size (i.e., not small), the t-distribution is roughly Gaussian.
The posterior for λ is a Gamma distribution. The DRAM-computed results show good agreement
with the analytic results.

Example 3. Here we compare the analytically computed posterior densities with those obtained
from DRAM for small sample sizes (i.e., N ∈ {2, 3, 4, 10}) and an unknown λ to verify that
the posterior of β matches the expected t-distribution. Both β and λ were calibrated and the
parameter chains were computed to 20,000 iterates. We computed the calibration for the three
cases of uncorrelated observation errors, equi-correlated observation errors, and AR(1) correlated

98

CASL-U-2014-0038-000

0.3 0.4 0.50

500

N=1

0.3 0.4 0.50

500

N=2

0.3 0.4 0.50

500

N=3

0.3 0.4 0.50

500

C
ou

nt

N=10

0.3 0.4 0.50

500

N=102

0.3 0.4 0.50

500

N=103

0.3 0.4 0.50

500

N=104

0.3 0.4 0.50

500

` value

N=105

0.3 0.4 0.50

500

N=106

Figure 6.9: Histograms of the chains obtained from DRAM with β calibrated assuming a noninfor-
mative prior. The figures illustrate convergence of the posterior densities to a Dirac delta impulse
centered at the true value β0 = 0.4 as the sample size N increases.

observation errors as specified by the ridge functions detailed in Appendix A.2.
The results are shown in Figure 6.11 for uncorrelated observation errors, Figure 6.12 for equi-

correlated observation errors, and Figure 6.13 for AR(1) observation errors. In each of the plots
for the β posterior densities, we also plot the Gaussian (labeled “Normal” in the figures) posterior
density which would be obtained for known λ to illustrate convergence of the t-distribution to a
Gaussian as the sample size N increases. The DRAM-computed results again generally agree with
the analytic results.

A sample QUESO input deck is provided in Listing 6.6. This general linear model verification
test suite will be integrated into future Dakota releases.

99

CASL-U-2014-0038-000

0.34 0.36 0.38 0.4 0.42 0.44 0.460

5

10

15

20

25

Pr
ob

ab
ilit

y

`

`, Case 1, Non−informative Prior

DRAM
Analytic

0.48 0.5 0.52 0.54 0.560

5

10

15

20

25

30

35

40

Pr
ob

ab
ilit

y
`

`, Case 1, Gaussian Prior

DRAM
Analytic

(a) (b)

0.35 0.4 0.450

5

10

15

20

25

Pr
ob

ab
ilit

y

`

`, Case 2, Non−informative Prior

DRAM
Analytic

500 1000 15000

0.5

1

1.5

2

2.5

3

3.5 x 10−3

Pr
ob

ab
ilit

y

h

h, Case 2, Non−informative Prior

DRAM
Analytic

(c) (d)

Figure 6.10: Comparison of DRAM-computed posterior densities for β, λ with the analytic posterior
densities. Case 1: β posterior density with β unknown assuming a (a) noninformative prior and
(b) Gaussian prior. Case 2: β, λ unknown, calibrated assuming a noninformative prior, and the
resulting (c) β posterior density and (d) λ posterior density.

100

CASL-U-2014-0038-000

0.3 0.35 0.4 0.45 0.50

5

10

15

20
N=2

`

Pr
ob

ab
ilit

y

DRAM
Analytic
Normal

0.3 0.35 0.4 0.45 0.50

5

10

15

20

25
N=3

`

Pr
ob

ab
ilit

y

DRAM
Analytic
Normal

0.36 0.38 0.4 0.420

10

20

30
N=4

`

Pr
ob

ab
ilit

y

DRAM
Analytic
Normal

0.38 0.4 0.420

10

20

30

40

N=10

`

Pr
ob

ab
ilit

y

DRAM
Analytic
Normal

(a)

1000 2000 3000 4000 5000
0

0.5

1

1.5
x 10

−3 N=2

λ

P
ro

b
a
b
ili

ty

DRAM

Analytic

1000 2000 3000 4000 5000
0

2

4

6

8

x 10
−4 N=3

λ

P
ro

b
a
b
ili

ty

DRAM

Analytic

1000 2000 3000 4000 5000
0

2

4

6

8
x 10

−4 N=4

λ

P
ro

b
a
b
ili

ty

DRAM

Analytic

1000 2000 3000 4000 5000
0

0.5

1
x 10

−3 N=10

λ

P
ro

b
a
b
ili

ty

DRAM

Analytic

(b)

Figure 6.11: Comparison of DRAM-computed posterior densities with analytic posterior densities
for small sample sizes and uncorrelated observation errors. Normal distribution shown to illustrate
convergence of the t-distribution with increasing sample size. (a) Posterior densities for β and (b)
Posterior densities for λ.

101

CASL-U-2014-0038-000

0.3 0.35 0.4 0.45 0.50

5

10

15

20
N=2

`

Pr
ob

ab
ilit

y

DRAM
Analytic
Normal

0.35 0.4 0.450

5

10

15

20

25
N=3

`

Pr
ob

ab
ilit

y

DRAM
Analytic
Normal

0.35 0.4 0.450

10

20

30
N=4

`

Pr
ob

ab
ilit

y

DRAM
Analytic
Normal

0.34 0.36 0.38 0.4 0.420

10

20

30

40

N=10

`
Pr

ob
ab

ilit
y

DRAM
Analytic
Normal

(a)

1000 2000 3000 4000 5000
0

0.5

1

1.5
x 10

−3 N=2

λ

P
ro

b
a
b
ili

ty

DRAM

Analytic

1000 2000 3000 4000 5000
0

2

4

6

8

x 10
−4 N=3

λ

P
ro

b
a
b
ili

ty

DRAM

Analytic

1000 2000 3000 4000 5000
0

2

4

x 10
−4 N=4

λ

P
ro

b
a

b
ili

ty

DRAM

Analytic

1000 2000 3000 4000 5000
0

2

4

6

8

x 10
−4 N=10

λ

P
ro

b
a

b
ili

ty

DRAM

Analytic

(b)

Figure 6.12: Comparison of DRAM-computed posterior densities with analytic posterior densi-
ties for small sample sizes and equi-correlated observation errors. Normal distribution shown to
illustrate convergence of the t-distribution with increasing sample size. (a) Posterior densities for
β and (b) Posterior densities for λ.

102

CASL-U-2014-0038-000

0.3 0.35 0.4 0.45 0.50

5

10

15

20
N=2

`

Pr
ob

ab
ilit

y

DRAM
Analytic
Normal

0.35 0.4 0.450

5

10

15

20

25
N=3

`

Pr
ob

ab
ilit

y

DRAM
Analytic
Normal

0.32 0.34 0.36 0.38 0.4 0.420

10

20

30
N=4

`

Pr
ob

ab
ilit

y

DRAM
Analytic
Normal

0.36 0.38 0.4 0.420

10

20

30

40

N=10

`
Pr

ob
ab

ilit
y

DRAM
Analytic
Normal

(a)

1000 2000 3000 4000 5000
0

0.5

1

1.5
x 10

−3 N=2

λ

P
ro

b
a
b
ili

ty

DRAM

Analytic

1000 2000 3000 4000 5000
0

2

4

6

8

x 10
−4 N=3

λ

P
ro

b
a
b
ili

ty

DRAM

Analytic

1000 2000 3000 4000 5000
0

2

4

x 10
−4 N=4

λ

P
ro

b
a
b
ili

ty

DRAM

Analytic

1000 2000 3000 4000 5000
0

0.5

1
x 10

−3 N=10

λ

P
ro

b
a
b
ili

ty

DRAM

Analytic

(b)

Figure 6.13: Comparison of DRAM-computed posterior densities with analytic posterior densi-
ties for small sample sizes and AR(1) observation errors. Normal distribution shown to illustrate
convergence of the t-distribution with increasing sample size. (a) Posterior densities for β and (b)
Posterior densities for λ.

103

CASL-U-2014-0038-000

Listing 6.6: QUESO input for the general linear model verification test suite.

###

2 # UQ Environment

###

4 env_numSubEnvironments = 1

env_subDisplayFileName = outputData/display_env

6 env_subDisplayAllowAll = 0

env_subDisplayAllowedSet = 0 1 2 3 4 5 6 7

8 env_displayVerbosity = 2

env_seed = 0

10

###

12 # Statistical inverse problem (ip)

###

14 ip_computeSolution = 1

ip_dataOutputFileName = outputData/sip_algver

16 ip_dataOutputAllowedSet = 0 1

18 ###

Information for Metropolis -Hastings algorithm

20 ###

ip_mh_dataOutputFileName = outputData/sip_algver

22 ip_mh_dataOutputAllowedSet = 0 1

24 ip_mh_rawChain_dataInputFileName = .

ip_mh_rawChain_size = 20000

26 ip_mh_rawChain_generateExtra = 0

ip_mh_rawChain_displayPeriod = 2000

28 ip_mh_rawChain_measureRunTimes = 1

ip_mh_rawChain_dataOutputFileName = outputData/sip_algver_raw_chain

30 ip_mh_rawChain_dataOutputAllowedSet = 0 1 2 3 4 5 6 7

32 ip_mh_displayCandidates = 0

ip_mh_putOutOfBoundsInChain = 0

34 ip_mh_dr_maxNumExtraStages = 3

ip_mh_dr_listOfScalesForExtraStages = 5. 10. 20.

36 ip_mh_am_initialNonAdaptInterval = 0

ip_mh_am_adaptInterval = 200

38 ip_mh_am_eta = 0.05703 #(2.4^2)/d, d is

the dimension of the problem

40 ip_mh_am_epsilon = 1.e-5

42 ip_mh_filteredChain_generate = 1

ip_mh_filteredChain_discardedPortion = 0.

44 ip_mh_filteredChain_lag = 10

ip_mh_filteredChain_dataOutputFileName = outputData/sip_algver_filtered_chain

46 ip_mh_filteredChain_dataOutputAllowedSet = 0 1

104

CASL-U-2014-0038-000

Chapter 7

COBRA-TF VUQ Studies

This chapter concludes the manual by demonstrating use of Dakota to complete an overall VUQ
process for CASL Progression Problem 6, simulated with COBRA-TF, as described in Section 2.3.
The workflow demonstration includes the following Dakota studies:

1. Initial centered parameter studies to exercise the COBRA-TF model with two coupled
physics scenarios and verify the Dakota/COBRA-TF interfaces, resulting in adding and re-
moving some parameters from the admissible set. (Section 7.1)

2. Sensitivity analysis using parameter study, LHS and Morris methods to identify the most
important of 33 parameters. Initial LHS studies revealed code robustness issues under joint
variation, resulting in adjusting the range of one parameter. Screening based on these studies
resulted in five significant parameters. Another LHS study with 50 samples was conducted
over these parameters and used in subsequent activities. (Section 7.2)

3. Deterministic and Bayesian calibration to estimate the values or distributions of the
five significant parameters using synthetic data. The deterministic calibration demonstrates
gradient-based local calibration using the COBRA-TF simulation model directly, while the
Bayesian calibration uses a surrogate model constructed from the 50 LHS samples. (Sec-
tion 7.3)

4. Surrogate construction and validation to assess the quality and applicability of a response
surface model. (Section 7.3.2)

The total Progression Problem 6 parameter set for consideration is indicated in Table 2.6 in
Section 2.3. The two parameters marked with an asterisk in this table, ql and qv, were initially
included to assess the effects of heat transfer across the fuel pin surface into the channel liquid and
vapor phases, respectively. However, it was quickly discovered that for the steady-state Progression
Problem 6, perturbing either of these produces an inherent thermal imbalance precluding any steady
thermal behavior. Accordingly, these parameters were excluded from the following studies. For all
studies in this chapter, the total pressure drop through the fuel rod assembly (here indicated by
TotalPressure) was used as the quantity of interest.

105

CASL-U-2014-0038-000

7.1 Initial Parameter Studies with Two Power Distributions

Two initial centered parameter studies were conducted to verify the Dakota/COBRA-TF interface,
assess code robustness, and generate initial results. Both employed a Dakota centered parameter
study (Section 3.2.1) over 29 parameters for which the shift values were zero, e.g. kap = 0, and the
scaling values were allowed to vary by ±5% around unity, e.g. kp = 1.0± 5% in increments of 1%.
The two studies differ in the power distribution input to the thermal hydraulics code. The first
uses a uniform value specified via input, while the second uses an axially varying power distribu-
tion representing a converged steady-state solution from a previous full simulation of Progression
Problem 6. The second study represents a parameter sensitivity study performed around the actual
solution to the neutronics component of the problem. The four parameters k xkwlx, k cd, k cdfb,
and k wkr were not yet available in the Dakota/COBRA-TF interface when these early studies
were conducted.

The initial centered parameter studies each involve 29 parameters evaluated at 10 pertubed
values in addition to the baseline (nominal) evaluation. This amounts to 291 total runs for each
study. Dakota provides a concurrent execution facility which for these studies enables 60 indepen-
dent runs to execute simultaneously on the james007 CASL machine. Each run requires between
5 and 7 minutes so that each centered parameter study completes in just under 1 hour assuming
available capacity on the machine.

Table 7.1 summarizes the results for the uniform power distribution, and Table 7.2 summarizes
results for the spatially varying power distribution. All values are reported as percentages of the
difference in total pressure drop across the fuel assembly compared to a baseline value representing
unperturbed parameter values. All parameters were perturbed in the same manner, e.g. the scaling
coefficient was adjusted -5% to +5% in increments of 1%. The inlet mass flow rate finlet was
incorrectly included in these initial studies and later removed in the final study when the axial wall
friction and the three loss coefficients for grid spacers were added. These initial results demonstrate
the iterative exploratory process of conducting Dakota studies on models, so detailed discussion is
omitted.

7.2 COBRA-TF Sensitivity Studies

Initial studies helped stabilize the admissible parameter set to 33 key parameters, for which the VUQ
process is demonstrated in this section. The first step in sensitivity analysis is to perform a centered
parameter study to assess the effect of individual parameters on the simulation response. Then
we conduct Dakota analyses that jointly vary the parameters to better assess global sensitvities
for complex models. The Latin hypercube and Morris methods complement the parameter study
results to screen the parameter set.

7.2.1 Centered Parameter Study

Dakota Input: A Dakota input file dakota centered 33.in for a 33 variable (now including pa-
rameters k xkwlx, k cd, k cdfb, and k wkr) centered parameter study is shown in Listing 7.1. The
method section (line 6) prescribes the study with five each positive and negative parameter steps of
0.01. The 33 COBRA-TF parameters are specified in the variables section, with an initial point

of 1.0 (line 14), indicating nominal input values for the simulation. The interface (line 17) speci-
fies use of the dakota-vera-analysis driver (line 21), which implements the Dakota/COBRA-TF

106

CASL-U-2014-0038-000

Table 7.1: Percent difference of total pressure drop compared to the baseline value of 1.17304 bar
using uniform power distribution input to the COBRA-TF thermal hydraulics code.

percent perturbation in parameter

parameter -5% -4% -3% -2% -1% +1% +2% +3% +4% +5%

cond 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

eta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

finlet -7.07 -5.68 -4.28 -2.87 -1.44 1.45 2.91 4.39 5.88 7.38

gama 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

qliht 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

qradd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

qradv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

qvapl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

rodqq 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

sdent 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

sent 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

sphts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

tmasg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

tmasl -0.002 -0.002 -0.001 -0.001 -0.001 0.0 0.001 0.001 0.002 0.003

tmasv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

tmome 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

tmoml 0.003 0.002 0.002 0.001 0.0 -0.001 -0.003 -0.003 -0.005 -0.006

tmomv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

tnrgl 0.0 0.0 0.0 0.0 0.0 0.0 -0.001 -0.001 -0.001 -0.001

tnrgv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkge 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkvls 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkwew 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkwlw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkwvw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

interface descibed in Appendix B. This analysis workflow accepts values of the 33 parameters from
Dakota, runs the simulation, and extracts the desired response metric, TotalPressure. Dakota’s
work directory feature (line 28) will cloister each COBRA-TF simulation in a separate working
directory to permit concurrent model evaluations.

Results and Discussion: Figure 7.1 displays data from the Dakota-generated tabular data file
dakota centered 33.dat, revealing the univariate effects of each parameter on the TotalPressure
response. The parameters k cd and k xkwlx have significant effect and there is a strong linear re-

107

CASL-U-2014-0038-000

Table 7.2: Percent difference of total pressure drop compared to the baseline value of 1.17632 bar
using a power distribution from a previous steady-state neutronics solution to Progression Problem
6.

percent perturbation in parameter

parameter -5% -4% -3% -2% -1% +1% +2% +3% +4% +5%

cond 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

eta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

finlet 7.07 -5.68 -4.28 -2.86 -1.44 1.45 2.91 4.39 5.88 7.38

gama 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

qliht 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

qradd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

qradv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

qvapl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

rodqq 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

sdent 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

sent 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

sphts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

tmasg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

tmasl 0.001 -0.001 -0.001 0.0 0.0 0.001 0.002 0.003 0.003 0.004

tmasv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

tmome 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

tmoml 0.003 0.003 0.003 0.002 0.001 -0.001 -0.002 -0.003 -0.004 -0.006

tmomv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

tnrgl 0.001 0.001 0.001 0.001 0.0 0.0 0.0 0.0 0.0 0.0

tnrgv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkge 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkvls 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkwew 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkwlw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xkwvw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

lationship between each of them and TotalPressure. Parameters k tmasl, k tmoml, and k tnrgl

induce small changes in the response, and the remainder of the parameters have zero effect. These
sensitivity results make physical sense based on assessment of the test problem. The total pressure
drop should depend strongly on the loss coefficient (k cd) and wall friction (k xkwlx) in the domi-
nant flow direction, with a minor dependency on the turbulent mixing between channels (k tmasl,
k tmoml, and k tnrgl).

108

CASL-U-2014-0038-000

Listing 7.1: Dakota input file for centered parameter study, with ±5% variation in each of 33
parameters.

1 strategy

single_method

3 tabular_graphics_data

tabular_graphics_file ’dakota_centered_33.dat ’

5

method

7 # 11 total evaluations over range [0.95 ,1.05]

centered_parameter_study

9 step_vector 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.01

steps_per_variable 5

11

variables

13 continuous_design 33

initial_point 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

15 descriptors ’k_eta ’ ’k_gama ’ ’k_sent ’ ’k_sdent ’ ’k_tmasv ’ ’k_tmasl ’ ’

k_tmasg ’ ’k_tmomv ’ ’k_tmome ’ ’k_tmoml ’ ’k_xk ’ ’k_xkes ’ ’k_xkge ’ ’k_xkl ’ ’

k_xkle ’ ’k_xkvls ’ ’k_xkwvw ’ ’k_xkwlw ’ ’k_xkwew ’ ’k_qvapl ’ ’k_tnrgv ’ ’k_tnrgl ’

’k_rodqq ’ ’k_qradd ’ ’k_qradv ’ ’k_qliht ’ ’k_sphts ’ ’k_cond ’ ’k_xkwvx ’ ’

k_xkwlx ’ ’k_cd ’ ’k_cdfb ’ ’k_wkr ’

17 interface

fork

19 asynchronous

evaluation_concurrency = 60

21 analysis_driver = ’dakota -vera -analysis ’

extract TotalPressure metric (length 1)

23 analysis_components = ’TotPress ’

parameters_file = ’params.in ’

25 # aprepro

results_file = ’results.out ’

27 failure_capture recover NaN

work_directory

29 directory_tag

named ’workdir ’

31 file_save directory_save

33 responses

num_response_functions = 1

35 descriptors

’TotalPressure ’

37 no_gradients

no_hessians

109

CASL-U-2014-0038-000

0.95 1 1.05

1

2

k
eta

T
ot

al
P

re
ss

ur
e

0.95 1 1.05

1

2

k
gama

0.95 1 1.05

1

2

k
sent

0.95 1 1.05

1

2

k
sdent

0.95 1 1.05

1

2

k
tmasv

0.95 1 1.05

1.1763

1.1763

1.1764

k
tmasl

T
ot

al
P

re
ss

ur
e

0.95 1 1.05

1

2

k
tmasg

0.95 1 1.05

1

2

k
tmomv

0.95 1 1.05

1

2

k
tmome

0.95 1 1.05
1.1763
1.1763
1.1763
1.1763
1.1763
1.1764

k
tmoml

0.95 1 1.05

1

2

k
xk

T
ot

al
P

re
ss

ur
e

0.95 1 1.05

1

2

k
xkes

0.95 1 1.05

1

2

k
xkge

0.95 1 1.05

1

2

k
xkl

0.95 1 1.05

1

2

k
xkle

0.95 1 1.05

1

2

k
xkvls

T
ot

al
P

re
ss

ur
e

0.95 1 1.05

1

2

k
xkwvw

0.95 1 1.05

1

2

k
xkwlw

0.95 1 1.05

1

2

k
xkwew

0.95 1 1.05

1

2

k
qvapl

0.95 1 1.05

1

2

k
tnrgv

T
ot

al
P

re
ss

ur
e

0.95 1 1.05
1.1763
1.1763
1.1763
1.1763
1.1763
1.1763

k
tnrgl

0.95 1 1.05

1

2

k
rodqq

0.95 1 1.05

1

2

k
qradd

0.95 1 1.05

1

2

k
qradv

0.95 1 1.05

1

2

k
qliht

T
ot

al
P

re
ss

ur
e

0.95 1 1.05

1

2

k
sphts

0.95 1 1.05

1

2

k
cond

0.95 1 1.05

1

2

k
xkwvx

0.95 1 1.05

1.15

1.2

k
xkwlx

0.95 1 1.05

1.16

1.18

1.2

k
cd

T
ot

al
P

re
ss

ur
e

0.95 1 1.05

1

2

k
cdfb

0.95 1 1.05

1

2

k
wkr

Figure 7.1: Sensitivities of TotalPressure to each of 33 variables varied over ±5% in a centered
parameter study. Note that most parameters had identically zero variation and k tmasl, k tmoml,
and k tnrgl have only slight variation.

110

CASL-U-2014-0038-000

7.2.2 Latin hypercube sampling studies

Latin hypercube sampling for sensitivity analysis is described in Section 3.2.3. Since all the
COBRA-TF parameters affect model form in the solution, they are taken to have uniform dis-
tributions on the interval [−10%, 10%]. Upon conducting initial LHS studies, the simulation failed
to converge when run with deviation of k tmasl > 5%. Two possibilities for this failure are likely
and would require additional investigation to fully diagnose. One possibility is that perturbing this
parameter along with others pertinent to overall mass conservation introduces an inherent incon-
sistency precluding steady mass conservation. Another possibility involves the temporal stability
of running COBRA-TF to a steady state. Increasing k tmasl too much may violate the stability
requirements of the COBRA-TF time integration method such that a steady-state is not reached.
We did not pursue this further but instead decreased the range of perturbation of this parameter
such that converged steady-state solutions were obtained in a stable manner. Therefore a uniform
distribution on [−5%, 5%] was used for this parameter.

Dakota Input: To change the Dakota input from a centered parameter study to a LHS
study, the method and variables specifications change. The method block now prescribes a Latin
hypercube sampling study. The number of samples is specified to be N = 10×(M =) 33 parameters,
or N = 330:

method

sampling

sample_type lhs

samples = 330

seed = 52983

The variables section changes to use uncertain variables with a uniform distribution on [0.9, 1.1],
except for k tmasl ∈ [0.95, 1.05]:

uniform_uncertain = 33

upper_bounds 1.1 1.1 1.1 1.1 1.1 1.05 1.1 1.1 1.1 1.1 1.1 1.1 1.1

1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

1.1 1.1 1.1 1.1 1.1 1.1 1.1

lower_bounds 0.9 0.9 0.9 0.9 0.9 0.95 0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.9 0.9 0.9 0.9 0.9 0.9 0.9

The full Dakota input file dakota lhs 33.in is shown in Listing 7.2.
Results and Discussion: Relevant outputs generated by Dakota include the correlation coef-

ficients in the screen output dakota lhs 33.out, and tabulated data in dakota lhs 33.dat. The
portion of the Dakota console output with the partial correlation coefficients is shown in Fig-
ure 7.2. The output is easier to comprehend when plotted with Matlab, as shown in the bar graph
in Figure 7.3. The partial correlation coefficients near 1.0 indicate that there is a strong linear cor-
relation between k cd and TotalPressure and between k xkwlx and TotalPressure, consistent
with physical intuition that total pressure drop should depend linearly on both the axial grid spacer
loss coefficient and the axial wall friction coefficient. No other parameters are strongly significant
by this measure (greater than 0.5), although several are greater than 0.1 and could be considered
for inclusion in follow-on analyses based on assessment of their interaction with other parameters
or nonlinear behavior.

111

CASL-U-2014-0038-000

Listing 7.2: Dakota input file for Latin hypercube sampling-based sensitivity analysis study with
330 samples and uniform input distributions.

strategy

2 single_method

tabular_graphics_data

4 tabular_graphics_file ’dakota_lhs_33.dat ’

6 method

sampling

8 sample_type lhs

samples = 330

10 seed = 52983

12 variables

uniform_uncertain = 33

14 upper_bounds 1.1 1.1 1.1 1.1 1.1 1.05 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

lower_bounds 0.9 0.9 0.9 0.9 0.9 0.95 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

16 descriptors ’k_eta ’ ’k_gama ’ ’k_sent ’ ’k_sdent ’ ’k_tmasv ’ ’k_tmasl ’ ’

k_tmasg ’ ’k_tmomv ’ ’k_tmome ’ ’k_tmoml ’ ’k_xk ’ ’k_xkes ’ ’k_xkge ’ ’k_xkl ’ ’

k_xkle ’ ’k_xkvls ’ ’k_xkwvw ’ ’k_xkwlw ’ ’k_xkwew ’ ’k_qvapl ’ ’k_tnrgv ’ ’k_tnrgl ’

’k_rodqq ’ ’k_qradd ’ ’k_qradv ’ ’k_qliht ’ ’k_sphts ’ ’k_cond ’ ’k_xkwvx ’ ’

k_xkwlx ’ ’k_cd ’ ’k_cdfb ’ ’k_wkr ’

18 interface

fork

20 asynchronous

evaluation_concurrency = 60

22 analysis_driver = ’dakota -vera -analysis ’

extract TotalPressure metric (length 1)

24 analysis_components = ’TotPress ’

parameters_file = ’params.in ’

26 # aprepro

results_file = ’results.out ’

28 failure_capture recover NaN

work_directory

30 directory_tag

named ’workdir ’

32 file_save directory_save

34 responses

num_response_functions = 1

36 descriptors

’TotalPressure ’

38 no_gradients

no_hessians

112

CASL-U-2014-0038-000

Partial Correlation Matrix between input and output:

TotalPressure

k_eta 7.48866e-02

k_gama -3.07977e-02

k_sent -3.36640e-02

k_sdent -6.83465e-02

k_tmasv -3.48366e-02

k_tmasl 1.11817e-01

k_tmasg -1.88872e-01

k_tmomv -1.15407e-01

k_tmome 1.68634e-02

k_tmoml 1.90197e-02

k_xk 8.00607e-02

k_xkes -4.52322e-02

k_xkge -6.88362e-02

k_xkl 3.59859e-02

k_xkle -3.31872e-02

k_xkvls 1.08367e-01

k_xkwvw -9.66830e-02

k_xkwlw 1.43162e-01

k_xkwew -7.26037e-03

k_qvapl -8.55824e-02

k_tnrgv -2.87188e-02

k_tnrgl -5.43819e-03

k_rodqq 1.81288e-02

k_qradd -2.23918e-02

k_qradv -1.10458e-02

k_qliht -8.77747e-03

k_sphts -4.76993e-02

k_cond -3.93625e-02

k_xkwvx 3.31933e-02

k_xkwlx 9.99585e-01

k_cd 9.98520e-01

k_cdfb -1.86595e-02

k_wkr 2.35471e-02

Figure 7.2: Dakota console output showing partial correlations for the COBRA-TF simulated
Progression Problem 6.

113

CASL-U-2014-0038-000

−0.5 0 0.5 1 1.5

k_{eta}
k_{gama}

k_{sent}
k_{sdent}
k_{tmasv}
k_{tmasl}

k_{tmasg}
k_{tmomv}
k_{tmome}
k_{tmoml}

k_{xk}
k_{xkes}
k_{xkge}

k_{xkl}
k_{xkle}

k_{xkvls}
k_{xkwvw}
k_{xkwlw}

k_{xkwew}
k_{qvapl}
k_{tnrgv}
k_{tnrgl}

k_{rodqq}
k_{qradd}
k_{qradv}

k_{qliht}
k_{sphts}
k_{cond}

k_{xkwvx}
k_{xkwlx}

k_{cd}
k_{cdfb}
k_{wkr}

 0.07

−0.03

−0.03

−0.07

−0.03

 0.11

−0.19

−0.12

 0.02

 0.02

 0.08

−0.05

−0.07

 0.04

−0.03

 0.11

−0.10

 0.14

−0.01

−0.09

−0.03

−0.01

 0.02

−0.02

−0.01

−0.01

−0.05

−0.04

 0.03

 1.00

 1.00

−0.02

 0.02

Partial correlation for TotalPressure

Figure 7.3: Bar graph showing partial correlation for each of 33 variables with TotalPressure for
the COBRA-TF simulated Progression Problem 6.

114

CASL-U-2014-0038-000

Figure 7.4 displays scatter plots generated with Matlab from the Dakota-generated tabular data
file. Each plot shows the overall relationship between each parameter and TotalPressure, with
the additional vertical variation being due to the other parameters not plotted. The green lines are
a linear regression on the displayed data, indicating the strength of the linear parameter response
relationship, again strongest for k cd and k xkwlx. There is no distinguishable input/output trend
for the other variables, and no patterns in the scatter cloud to suggest concern about strong
nonlinear or interaction effects.

7.2.3 Morris Screening

Dakota Input: To change the study from LHS to the Morris screening method described in
Section 3.2.4, one need only change the Dakota method specification to the following:

method

psuade_moat

partitions = 9 #to generate 10 levels

samples = 340 # must be integer multiple of (num_vars + 1)

seed = 20

The full Dakota input file is available in examples/CobraTF/MorrisStudies/dakota morris 33.in.
Results and Discussion: The results of the Morris study are the modified means and standard

deviations of the elementary effects in the Dakota console output, excerpted from dakota morris 33.out

into Figure 7.5. These indicate that inputs 30 and 31 (k cd and k xkwlx) have a strong main effect
and some interaction effect. They also indicate that no other parameters have any effect, save 6,
10, and 22, corresponding to k tmasl, k tmoml, and k tnrgl, which each have very small effects.
This is physically consistent. The main forces impacting pressure drop are wall friction and loss
coefficients with minor impacts due to turbulent mixing.

7.2.4 Screening to Reduce Parameters

Figure 7.6 summarizes the results of the sensitivity studies conducted, showing correlations from
the LHS study, effects from the Morris study, and variation seen in the centered parameter study.
The various sensitivity methods are consistent with each other. Based on these results, the following
studies will use only parameters inducing variation in TotalPressure: k tmasl, k tmoml, k tnrgl,
k xkwlx, and k cd. Of these, only the last two have strong effects. Because the axial grid spacer
loss coefficient and the axial wall friction coefficient appear in the axial momentum equations as
multipliers of the axial velocity squared, the total pressure drop can only be related to the sum of
these two coefficients. The impact of this sort of parameter nonidentifiability on model calibration
will be illustrated in the analyses of Section 7.3.3.

LHS studies with 50 and 200 samples were then conducted over the five most sensitive parame-
ters to (1) alleviate any potential confounding from the other parameters in the sensitivity metrics
and (2) generate simulation data to use for calibration studies in the next section. The input and
output files for these studies are omitted from the text (as the sensitivity results are similar), but
are available in examples/CobraTF/LHSStudies/:

dakota_lhs_5.200.dat dakota_lhs_5.200.out dakota_lhs_5.50.in

dakota_lhs_5.200.in dakota_lhs_5.50.dat dakota_lhs_5.50.out

115

CASL-U-2014-0038-000

0.9 1 1.1

1.1

1.2

1.3

k
eta

T
o

ta
lP

re
ss

u
re

0.9 1 1.1

1.1

1.2

1.3

k
gama

0.9 1 1.1

1.1

1.2

1.3

k
sent

0.9 1 1.1

1.1

1.2

1.3

k
sdent

0.9 1 1.1

1.1

1.2

1.3

k
tmasv

0.95 1 1.05

1.1

1.2

1.3

k
tmasl

T
o

ta
lP

re
ss

u
re

0.9 1 1.1

1.1

1.2

1.3

k
tmasg

0.9 1 1.1

1.1

1.2

1.3

k
tmomv

0.9 1 1.1

1.1

1.2

1.3

k
tmome

0.9 1 1.1

1.1

1.2

1.3

k
tmoml

0.9 1 1.1

1.1

1.2

1.3

k
xk

T
o

ta
lP

re
ss

u
re

0.9 1 1.1

1.1

1.2

1.3

k
xkes

0.9 1 1.1

1.1

1.2

1.3

k
xkge

0.9 1 1.1

1.1

1.2

1.3

k
xkl

0.9 1 1.1

1.1

1.2

1.3

k
xkle

0.9 1 1.1

1.1

1.2

1.3

k
xkvls

T
o

ta
lP

re
ss

u
re

0.9 1 1.1

1.1

1.2

1.3

k
xkwvw

0.9 1 1.1

1.1

1.2

1.3

k
xkwlw

0.9 1 1.1

1.1

1.2

1.3

k
xkwew

0.9 1 1.1

1.1

1.2

1.3

k
qvapl

0.9 1 1.1

1.1

1.2

1.3

k
tnrgv

T
o

ta
lP

re
ss

u
re

0.9 1 1.1

1.1

1.2

1.3

k
tnrgl

0.9 1 1.1

1.1

1.2

1.3

k
rodqq

0.9 1 1.1

1.1

1.2

1.3

k
qradd

0.9 1 1.1

1.1

1.2

1.3

k
qradv

0.9 1 1.1

1.1

1.2

1.3

k
qliht

T
o

ta
lP

re
ss

u
re

0.9 1 1.1

1.1

1.2

1.3

k
sphts

0.9 1 1.1

1.1

1.2

1.3

k
cond

0.9 1 1.1

1.1

1.2

1.3

k
xkwvx

0.9 1 1.1

1.1

1.2

1.3

k
xkwlx

0.9 1 1.1

1.1

1.2

1.3

k
cd

T
o

ta
lP

re
ss

u
re

0.9 1 1.1

1.1

1.2

1.3

k
cdfb

0.9 1 1.1

1.1

1.2

1.3

k
wkr

Figure 7.4: Scatter plots with regression lines for each of 33 variables with TotalPressure for the
COBRA-TF simulated Progression Problem 6.

116

CASL-U-2014-0038-000

>>>>>> PSUADE MOAT output for function 0:

*********************** MOAT Analysis ***********************

Input 1 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 2 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 3 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 4 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 5 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 6 (mod. mean & std) = 6.4800e-05 2.2768e-05

Input 7 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 8 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 9 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 10 (mod. mean & std) = 2.2320e-04 1.3041e-04

Input 11 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 12 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 13 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 14 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 15 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 16 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 17 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 18 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 19 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 20 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 21 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 22 (mod. mean & std) = 9.0000e-06 9.4868e-06

Input 23 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 24 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 25 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 26 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 27 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 28 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 29 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 30 (mod. mean & std) = 1.8036e-01 7.0671e-03

Input 31 (mod. mean & std) = 9.5857e-02 7.8750e-03

Input 32 (mod. mean & std) = 0.0000e+00 0.0000e+00

Input 33 (mod. mean & std) = 0.0000e+00 0.0000e+00

<<<<< Function evaluation summary: 340 total (340 new, 0 duplicate)

<<<<< Iterator psuade_moat completed.

<<<<< Single Method Strategy completed.

DAKOTA execution time in seconds:

Total CPU = 1.28

Figure 7.5: Dakota output showing modified means and standard deviations of elementary effects
for the COBRA-TF simulated Progression Problem 6.

117

CASL-U-2014-0038-000

parameter

partial

correlation

simple

correlation morris main

morris

interaction

CPS

variation

k_eta 0.07 0.03 0.00E+00 0.00E+00

k_gama ‐0.03 0.04 0.00E+00 0.00E+00

k_sent ‐0.03 ‐0.02 0.00E+00 0.00E+00

k_sdent ‐0.07 ‐0.01 0.00E+00 0.00E+00

k_tmasv ‐0.03 0.00 0.00E+00 0.00E+00

k_tmasl 0.11 0.00 6.48E‐05 2.28E‐05 medium

k_tmasg ‐0.19 ‐0.01 0.00E+00 0.00E+00

k_tmomv ‐0.12 ‐0.01 0.00E+00 0.00E+00

k_tmome 0.02 0.00 0.00E+00 0.00E+00

k_tmoml 0.02 ‐0.02 2.23E‐04 1.30E‐04 medium

k_xk 0.08 ‐0.02 0.00E+00 0.00E+00

k_xkes ‐0.05 0.00 0.00E+00 0.00E+00

k_xkge ‐0.07 0.01 0.00E+00 0.00E+00

k_xkl 0.04 ‐0.01 0.00E+00 0.00E+00

k_xkle ‐0.03 0.00 0.00E+00 0.00E+00

k_xkvls 0.11 ‐0.01 0.00E+00 0.00E+00

k_xkwvw ‐0.10 0.01 0.00E+00 0.00E+00

k_xkwlw 0.14 0.01 0.00E+00 0.00E+00

k_xkwew ‐0.01 0.03 0.00E+00 0.00E+00

k_qvapl ‐0.09 ‐0.01 0.00E+00 0.00E+00

k_tnrgv ‐0.03 0.00 0.00E+00 0.00E+00

k_tnrgl ‐0.01 0.03 9.00E‐06 9.49E‐06 low

k_rodqq 0.02 ‐0.01 0.00E+00 0.00E+00

k_qradd ‐0.02 0.00 0.00E+00 0.00E+00

k_qradv ‐0.01 0.00 0.00E+00 0.00E+00

k_qliht ‐0.01 0.00 0.00E+00 0.00E+00

k_sphts ‐0.05 0.03 0.00E+00 0.00E+00

k_cond ‐0.04 0.00 0.00E+00 0.00E+00

k_xkwvx 0.03 ‐0.02 0.00E+00 0.00E+00

k_xkwlx 1.00 0.88 1.80E‐01 7.07E‐03 high

k_cd 1.00 0.46 9.59E‐02 7.88E‐03 high

k_cdfb ‐0.02 ‐0.01 0.00E+00 0.00E+00

k_wkr 0.02 0.02 0.00E+00 0.00E+00

Figure 7.6: Summary of sensitivity analysis results for 33 COBRA-TF parameters. Missing values
are identically zero. Highlighted rows will be used in subsequent studies.

In particular the tabular data files are used in the follow-on Bayesian calibration and surrogate
generation examples.

7.3 Calibration Studies

In this section we emulate the model calibration processes described in Sections 5.1.1 and 6.2 by
generating synthetic data and then applying Dakota algorithms to determine the parameter values
yielding the best match between model and data. The 10 synthetic data points, generated by
adding independent and identically distributed Gaussian noise ε ∼ N (0, σ2) for σ = 0.025 to the

118

CASL-U-2014-0038-000

nominal TotalPressure = 1.17304 bar, are placed in ctf dat.txt for consumption by Dakota.
They are:

1.21626870795683

1.16149729403381

1.1866271753701

1.17683037400566

1.17908641397936

1.12766758338348

1.17093102211906

1.2072835297607

1.18316329384675

1.19396014684855

7.3.1 Deterministic Calibration

Dakota Input: A local gradient-based algorithm should perform well for this model calibration
problem as the global sensitivity analysis above revealed smooth and linear trends. The Dakota
input file for this problem is shown in Listing 7.3. Highlights include: use of the NL2SOL method
(line 7) for local calibration; use of design variables (line 11) instead of uncertain variables, since we
are calibrating; use of calibration terms in the responses section (line 35); and input of the external
data file into Dakota (line 38) for computing the least-squares residuals.

We also repeat the same study, calibrating only the two most influential variables (holding
the other three fixed at nominal) in hopes of improving the solution by eliminating unidentifiable
(insensitive) parameters. This requires changing the variables section to:

continuous_design = 2

initial_point 1.0103 0.9799

upper_bounds 1.05 1.1

lower_bounds 0.95 0.9

descriptors ’k_tmasl’ ’k_cd’

The complete input file is available in examples/CobraTF/Calibration/dakota calibration 2.in.
Results and Discussion: For each study, the end of the Dakota output (in files

examples/CobraTF/Calibration/dakota calibration [25].out) indicates the best solution found,
as shown in Figure 7.7. The best values of the parameters are shown, followed by the residuals
between the model calculations and data. A summary of the study initial and final values/resid-
ual norms appears in Table 7.3. In both studies, the optimization solver made progress toward
recovering the correct nominal values of k xkwlx and k cd, but no appreciable progress on the
other parameters. This is expected as the TotalPressure response is not sensitive to these input
parameters, rendering them essentially unidentifiable from the provided data.

7.3.2 Surrogate Construction

The analysis of Section 7.2 resulted in a reduction of the initial 33 COBRA-TF parameters to a final
set of five sensitive parameters with respect to induced variation in total pressure drop: k tmasl,
k tmoml, k tnrgl, k xkwlx, and k cd.

119

CASL-U-2014-0038-000

Listing 7.3: Dakota input file for deterministic local gradient-based calibration of five key parame-
ters in the COBRA-TF simulated Progression Problem 6.

1 strategy

single_method

3 tabular_graphics_data

tabular_graphics_file ’dakota_calibration_5.dat ’

5

method

7 nl2sol

convergence_tolerance 1.0e-6

9

variables

11 continuous_design = 5

initial_point 1.0103 0.9766 0.9888 0.9773 0.9799

13 upper_bounds 1.05 1.1 1.1 1.1 1.1

lower_bounds 0.95 0.9 0.9 0.9 0.9

15 descriptors ’k_tmasl ’ ’k_tmoml ’ ’k_tnrgl ’ ’k_xkwlx ’ ’k_cd ’

17 interface

fork

19 asynchronous

use max concurrency = 11

21 # evaluation_concurrency = 60

analysis_driver = ’dakota -vera -analysis ’

23 # extract TotalPressure metric (length 1)

analysis_components = ’TotPress ’

25 parameters_file = ’params.in ’

aprepro

27 results_file = ’results.out ’

failure_capture recover NaN

29 work_directory

directory_tag

31 named ’workdir ’

file_save directory_save

33

responses

35 calibration_terms = 1

descriptors

37 ’TotalPressure ’

calibration_data_file = ’ctf_dat.txt ’

39 freeform

num_experiments = 1

41 num_replicates = 10

numerical_gradients

43 central

coarse FD step as cobra might not be sensitive enough

45 fd_step_size = 1.0e-2

no_hessians

120

CASL-U-2014-0038-000

<<<<< Function evaluation summary: 48 total (38 new, 10 duplicate)

<<<<< Best parameters =

1.0500000000e+00 k_tmasl

9.0000000000e-01 k_tmoml

9.8880000000e-01 k_tnrgl

9.9500856366e-01 k_xkwlx

1.0177721341e+00 k_cd

<<<<< Best residual norm = 7.4038381819e-02; 0.5 * norm^2 = 2.7408409912e-03

<<<<< Best residual terms =

-3.5938707957e-02

1.8832705966e-02

-6.2971753701e-03

3.4996259943e-03

1.2435860206e-03

5.2662416617e-02

9.3989778809e-03

-2.6953529761e-02

-2.8332938467e-03

-1.3630146849e-02

<<<<< Best constraint values =

<<<<< Best data not found in evaluation cache

Confidence Interval for k_tmasl is [-6.8687978090e+01, 7.0787978090e+01]

Confidence Interval for k_tmoml is [9.0000000000e-01, 9.0000000000e-01]

Confidence Interval for k_tnrgl is [9.8880000000e-01, 9.8880000000e-01]

Confidence Interval for k_xkwlx is [9.9500856366e-01, 9.9500856366e-01]

Confidence Interval for k_cd is [1.0177721341e+00, 1.0177721341e+00]

Figure 7.7: Dakota console output showing final results for calibration with five parameters.

Table 7.3: Summary of five- and two-parameter calibration for the COBRA-TF simulated Pro-
gression Problem 6, initial and final parameter values and residual norm.

5 parameter case 2 parameter case

initial final initial final

k tmasl 1.0103 1.0500 1.0103 1.0414

k tmoml 0.9766 0.9000 1.0 1.0

k tnrgl 0.9888 0.9888 1.0 1.0

k xkwlx 0.9773 0.9950 1.0 1.0

k cd 0.9799 1.0178 0.9799 1.0083

1
2 ||r||

2 0.0085 0.0027 0.0085 0.0027

Dakota Input: Listing 7.4 shows the Dakota input file ctf gp eval.in for fitting a kriging
model with constant trend to total pressure drop as a function of these five parameters, and using
this fit to predict total pressure drop on a set of 20 validation runs. The kriging fit itself was based

121

CASL-U-2014-0038-000

on the results of using Dakota to run COBRA-TF on a Latin hypercube sample of size N = 50. The
output of these COBRA-TF runs was written to the file dakota pstudy.dat, which is subsequently
read into this job via the import points option (line 35).

Results and Discussion: Figure 7.8 compares the emulator predictions with the COBRA-
TF calculations of total pressure drop for the 20 validation runs. The left panel plots predicted
value against calculated value, with the resulting points falling very close to the desired 45◦ line.
The right panel plots the standardized residuals (calculated minus predicted total pressure drop
divided by standard error of predicted total pressure drop) against calculated value, indicating
a fairly constant scatter in the standardized residuals around the zero line across the spectrum
of calculated values. This result is desirable in that it both indicates unbiased prediction and
supports the assumption of a homogeneous (constant) process variance σ2. Furthermore, we can
apply a simple screening procedure for outliers to this standardized residual plot. First compute
the interquartile range (IQR) of the standardized residuals, defined as the 75-th percentile minus
the 25-th percentile of the standardized residuals. Second compute lower and upper bounds as
the 25-th percentile minus 1.5× IQR and the 75-th percentile plus 1.5× IQR, respectively. Any
standardized residuals falling outside these bounds are flagged for further investigation as potential
outliers. For this kriging fit, the lower and upper bounds calculated in this way were (-2.40, 3.38),
while the range of the standardized residuals themselves was well within these bounds at (-1.33,
2.38).

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

1.10 1.15 1.20 1.25

1.
10

1.
15

1.
20

1.
25

Calculated Total Pressure Drop

P
re

di
ct

ed
 T

ot
al

 P
re

ss
ur

e
D

ro
p

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

1.10 1.15 1.20 1.25

−
1

0
1

2

Calculated Total Pressure Drop

S
ta

nd
ar

di
ze

d
R

es
id

ua
l T

ot
al

 P
re

ss
ur

e
D

ro
p

Figure 7.8: Predicted vs. calculated total pressure drop (left panel) and standardized residual vs.
calculated total pressure drop (right panel) for 20 validation runs (red circles).

The leave-one-out cross-validation RMSPE of this kriging emulator, requested with the option
press (line 34), evaluated to 3.2415584202e-04. When validation samples are available, as in this
example, they can be used to compute a validation RMSPE. For Nv validation samples, calculate

RMSPE =

√√√√ 1

Nv

Nv∑
i=1

(Ci − Pi)2 ,

122

CASL-U-2014-0038-000

Listing 7.4: Dakota input file producing predictions for 20 validation runs from a GP emulator with
estimated constant trend for the COBRA-TF simulated Progression Problem 6.

Build and evaluate a Gaussian process emulator of COBRA -TF output

2 # at a user specified set of points

4 strategy

single_method

6 method_pointer = ’EvalSurrogate ’

tabular_graphics_data

8 tabular_graphics_file = ’ctf_gp_evals.dat ’

10 # Method to perform evaluations of the emulator

12 method

id_method = ’EvalSurrogate ’

14 model_pointer = ’SurrogateModel ’

16 # Verbose will show the type form of the surrogate model

output verbose

18

sampling

20 sample_type lhs

samples = 20

22 seed = 150

24 # Surrogate model specification

model

26 id_model = ’SurrogateModel ’

surrogate global

28 # GP model

gaussian_process surfpack

30 trend

constant

32 # compute and print diagnostics after build

metrics ’rsquared ’ ’root_mean_squared ’

34 press

import_points = ’dakota_pstudy.dat ’ annotated

36

variables ,

38 uniform_uncertain = 5

upper_bounds 1.05 1.1 1.1 1.1 1.1

40 lower_bounds 0.95 0.9 0.9 0.9 0.9

descriptors ’k_tmasl ’ ’k_tmoml ’ ’k_tnrgl ’ ’k_xkwlx ’ ’k_cd ’

42

responses

44 response_functions = 1

descriptors = ’TotalPressure ’

46 no_gradients

no_hessians

123

CASL-U-2014-0038-000

where Pi and Ci denote the i-th predicted and calculated values, respectively. For our validation
sample of Nv = 20, the RMSPE evaluates to 2.508674e-04. These RMSPE values are 0.15%
and 0.11% of the observed range in the 20 calculated total pressure drops, indicating the kriging
emulator possesses high accuracy for this application.

The assumption of Gaussian errors can be checked by examining normal probability plots of
the standardized residuals from both leave-one-out cross validation and out-of-sample validation.
Figure 7.9 shows normal probability plots for both of these cases. Theoretical quantiles from the
standard normal distribution are plotted on the x-axis, while the corresponding sample quantiles of
the standardized residuals are plotted on the y-axis. Consistency with the Gaussian error assump-
tion is indicated by the plotted points exhibiting strong linear association. The simple correlation
coefficients for the two cases are 0.992 and 0.965, respectively, suggesting that the Gaussian error
assumption is reasonable. The standardized residuals resulting from leave-one-out cross validation
are correlated, making the normal probability plot somewhat harder to interpret as the theoreti-
cal quantiles are calculated assuming independence. On the other hand, for the validation runs,
the residuals were transformed to obtain uncorrelated standardized residuals for use in the normal
probability plot [6].

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

Leave−one−out Cross Validation

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

−2 −1 0 1 2

−
1

0
1

2

Out−of−sample Validation

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 7.9: Normal probability plots based on standardized residuals from leave-one-out cross
validation (left panel) and out-of-sample validation (right panel).

7.3.3 Bayesian Calibration

We illustrate here the use and verification of the Bayesian model calibration techniques, discussed
in Section 6.2, for COBRA-TF. We focus on the parameters k tmasl, k tmoml, k tnrgl, k xkwlx,
and k cd which, as detailed in the sensitivity analysis of Section 7.2, had non-negligible values for
the Morris elementary effect statistics. The synthetic data of Section 7.3, generated as detailed in
Section 6.2.5, is consistent with the likelihoods employed in DRAM, DREAM, and GPMSA.

Analysis reveals that the total pressure drop can be accurately quantified by a linear relation

124

CASL-U-2014-0038-000

between k xkwlx and k cd. This is important for three reasons.

• This causes k xkwlx and k cd to be nonidentifiable in the sense that the input-to-output
relation is not unique – see Chapter 6 of [34] for details regarding the ramifications of non-
identifiable parameter sets. However, by specifying prior bounds on parameters, we can ensure
that we obtain a proper posterior density.

• We can show that the variable

η = 0.906 k xkwlx + 0.478 k cd (7.1)

is approximately normally distributed with mean 1.39 and standard deviation 7.91 × 10−3.
This provides an approximate analytic solution that we can employ for verification.

• This analysis predicts that k xkwlx and k cd should be negatively, and approximately linearly,
correlated. This information can also be used to verify sampling results.

For DRAM and DREAM implementation, we employed the surrogate, constructed using the
five parameters, as detailed in Section 7.3.2. GPMSA employs a Gaussian process emulator con-
structed from simulations run with pre-specified parameter inputs. We note that emulator uncer-
tainty is accounted for in GPMSA analysis whereas it is not in the Dakota-QUESO DRAM and
Dakota DREAM analyses. In all three packages, we enforced the parameter bounds summarized
in Table 7.4. We employed uniform densities over these ranges as prior densities for each random
variable.

Table 7.4: Parameter bounds used to construct prior densities.

Descriptors k tmasl k tmoml k tnrgl k xkwlx k cd

Lower Bounds 0.95 0.9 0.9 0.9 0.9

Upper Bounds 1.05 1.1 1.1 1.1 1.1

We ran the DRAM chain for 10,000 iterations and constructed 5 DREAM chains each of length
2000. As illustrated by the representative DRAM chain for k tmasl, which is plotted in Fig-
ure 7.10(a), the chain has burned in by 2000 so we employed the last 8000 elements for kernel
density estimation (kde). The DRAM and DREAM densities for η, given by (7.1), are compared
with the approximate analytic normal density N(1.39, (7.91× 10−3)2) in Figure 7.10(b). This pro-
vides a verification test in the manner detailed in Section 6.2.4. In Figure 7.10(c), we compare
GPMSA results, obtained with fixed and inferred measurement variances σ, with the approximate
analytic results. In Figure 7.10(d), we show that GPMSA, with inferred variances, accurately
matches the DRAM results. In combination, this verifies the accuracy of the Bayesian calibration
procedures and the surrogate model developed in Section 7.3.2.

We illustrate in Figure 7.11 the joint sample points for the negatively correlated random vari-
ables k xkwlx and k cd. These plots reflect the parameter limits specified in Table 7.4. The fact
that DRAM, DREAM and GPMSA yield the same joint sample plots, which are consistent with
the linear relation (7.1), further verifies the accuracy of all three methods for this implementation
of COBRA-TF. The input decks for DRAM and DREAM are provided in Listings 7.5 and 7.6.

125

CASL-U-2014-0038-000

0 2000 4000 6000 8000 10000
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

P
a

ra
m

e
te

r
V

a
lu

e

Chain Index
1.35 1.36 1.37 1.38 1.39 1.4 1.41 1.42 1.43 1.44
0

10

20

30

40

50

60

Parameter Value

DRAM

DREAM

Gaussian

(a) (b)

1.34 1.36 1.38 1.4 1.42 1.44 1.46
0

10

20

30

40

50

60

Parameter Value

Fixed Variance

Calibrated Variance

Gaussian

1.34 1.36 1.38 1.4 1.42 1.44 1.46
0

10

20

30

40

50

60

Parameter Value

DRAM

GPMSA

Gaussian

(c) (d)

Figure 7.10: (a) Representative DRAM chain for k tmasl showing burn-in by 2000. (b) Verification
of the densities for η provided by DRAM and DREAM through comparison with the analytic Gaus-
sian solution. (c) and (d) Verification of GPMSA for fixed and inferred measurement variance σ.

It was noted in Section 6.2.3 that once Bayesian chains have been constructed, values from the
chain can be used as inputs to surrogate models to compute calibrated predictions for additional
quantities of interest. This is illustrated in Figure 7.12, where we compare credible intervals for the
total pressure drop computed using GPMSA with the surrogate model evaluated using inputs from
the DRAM chain. The nominal total pressure drop value of 1.176 bar, computed using COBRA-TF
with nominal parameter values, lies within one standard deviation of the mean. Furthermore, the
prediction is essentially Gaussian due to the linearity of the response in this operating regime. The
Dakota input deck is provided in Listing 7.7 where one can note that it inputs DRAM values from
the file ctf gp evals dram.dat.

126

CASL-U-2014-0038-000

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

0.9

0.95

1

1.05

1.1

k
_
c
d

k_xkwlx

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

0.9

0.95

1

1.05

1.1

k
_
c
d

k_xkwlx

(a) (b)

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

0.9

0.95

1

1.05

1.1

k
_
c
d

k_xkwlx

(c)

Figure 7.11: Joint sample points for k xkwlx and k cd provided by (a) DRAM, (b) DREAM and
(c) GPMSA.

1.14 1.15 1.16 1.17 1.18 1.19 1.2 1.21 1.22 1.230

10

20

30

40

50

60

Pressure

DRAM
GPMSA
Gaussian
Nominal

Figure 7.12: Comparison of the credible interval constructed using GPMSA and the surrogate with
inputs from the DRAM chain. The nominal total pressure drop value of 1.176 bar was computed
using COBRA-TF.

127

CASL-U-2014-0038-000

Listing 7.5: Input for Dakota-QUESO DRAM as applied to the COBRA-TF surrogate for Progres-
sion Problem 6.

1 strategy

single_method

3

method

5 bayes_calibration queso

emulator

7 gaussian_process surfpack

import_points = ’dakota_5pstudy.dat ’ annotated

9 mcmc_type dram

rejection delayed

11 metropolis adaptive

samples = 10000

13 seed = 52983

15 variables

active design

17 continuous_design = 5

#initial_point 1.05 1.0 1.0 1.04

19 upper_bounds 1.05 1.1 1.1 1.1 1.1

lower_bounds 0.95 0.9 0.9 0.9 0.9

21 descriptors ’k_tmasl ’ ’k_tmoml ’ ’k_tnrgl ’ ’k_xkwlx ’ ’k_cd ’

23 interface

direct

25 analysis_driver = ’text_book ’

27 responses

calibration_terms = 1

29 calibration_data_file = ’ctf_dat.txt ’

freeform

31 num_experiments = 1

num_replicates = 10

33 num_std_deviations = 1

descriptors

35 ’TotalPressure ’

no_gradients

37 no_hessians

128

CASL-U-2014-0038-000

Listing 7.6: Input for Dakota DREAM as applied to the COBRA-TF surrogate for Progression
Problem 6.

1

strategy

3 single_method

5 method

bayes_calibration dream

7 emulator

gaussian_process surfpack

9 import_points = ’dakota_5pstudy.dat ’ annotated

#mcmc_type dram

11 #rejection delayed

#metropolis adaptive

13 samples = 10000

chains = 5

15 seed = 52983

17 variables

active design

19 continuous_design = 5

upper_bounds 1.05 1.1 1.1 1.1 1.1

21 lower_bounds 0.95 0.9 0.9 0.9 0.9

descriptors ’k_tmasl ’ ’k_tmoml ’ ’k_tnrgl ’ ’k_xkwlx ’ ’k_cd ’

23

interface

25 direct

analysis_driver = ’text_book ’

27

responses

29 calibration_terms = 1

calibration_data_file = ’ctf_dat.txt ’

31 freeform

num_experiments = 1

33 num_replicates = 10

num_std_deviations = 1

35 descriptors

’TotalPressure ’

37 no_gradients

no_hessians

129

CASL-U-2014-0038-000

Listing 7.7: Dakota input used to construct credible interval for total pressure drop using DRAM
evaluations.

Build and evaluate a Gaussian process emulator of COBRA -TF output

2 # at a user specified set of points

4 strategy

single_method

6 #environment

method_pointer = ’EvalSurrogate ’

8 tabular_graphics_data

tabular_graphics_file = ’ctf_gp_evals_dram.dat ’

10

Method to perform evaluations of the emulator

12

method

14 id_method = ’EvalSurrogate ’

model_pointer = ’SurrogateModel ’

16

Verbose will show the type form of the surrogate model

18 output verbose

20 list_parameter_study

import_points = ’dram_result.txt ’ freeform

22

Surrogate model specification

24 model

id_model = ’SurrogateModel ’

26 surrogate global

GP model

28 gaussian_process surfpack

trend

30 constant

compute and print diagnostics after build

32 metrics ’rsquared ’ ’root_mean_squared ’

press

34 import_points = ’dakota_5pstudy.dat ’ annotated

36 variables ,

uniform_uncertain = 5

38 upper_bounds 1.05 1.1 1.1 1.1 1.1

lower_bounds 0.95 0.9 0.9 0.9 0.9

40 descriptors ’k_tmasl ’ ’k_tmoml ’ ’k_tnrgl ’ ’k_xkwlx ’ ’k_cd ’

42 responses

response_functions = 1

44 descriptors = ’TotalPressure ’

no_gradients

46 no_hessians

130

CASL-U-2014-0038-000

Appendix A

General Linear Model Verification
Test Suite

This appendix provides additional technical details for the linear model introduced in Section 2.2.
Here we describe in detail a particular class of problems for which results of the QUESO DRAM or
Dakota DREAM sampling algorithm can be verified against analytical solutions. Specifically, we
present standard results for Bayesian analysis of the linear regression model ([11], pp. 233-265). In
linear regression, a N -vector of outputs y is related linearly to functions of inputs x,

y = Gβ + ε ,

where the i-th row of G contains the evaluation of these regression functions at input xi corre-
sponding to the i-th datum yi, β denotes the regression coefficients, and ε denotes the vector of
observational errors. In the following, observational errors will be assumed mean-zero Gaussian,
having variance (1/λ) and possibly correlated with parametric dependencies goverened by a pa-
rameter φ.

Marginal posterior distributions for β, λ, and φ are derived analytically for three increasingly
challenging verification scenarios: (i) β unknown, (λ, φ) fixed; (ii) (β, λ) unknown, φ fixed; and
(iii) (β, λ, φ) unknown. In the third scenario, the marginal posterior distributions of β, λ, and φ
do not belong to a standard class of probability distributions (such as Gaussian or Gamma, for
example), thus requiring the use of numerical methods such as quadrature to accurately estimate
their normalizing constants.

For each verification scenario, QUESO samples from the applicable marginal posterior distri-
butions for β, λ, and φ will be compared with the corresponding analytical results. Convergence
of posterior means and other summary statistics to corresponding parameter values assumed for
data generation will also be monitored for a subset of the observational error correlation structures
investigated.

Section A.1 describes how data are simulated and presents the three verification scenarios of
interest with corresponding analytical results for the desired posterior distributions in each scenario.
Section A.2 defines the verification tests currently implemented.

131

CASL-U-2014-0038-000

A.1 Verification Scenarios

Let εt denote a mean-zero Gaussian stochastic process having covariance function c(t1, t2|φ) =
(1/λ) r(t1, t2|φ), where λ > 0 and r(·, ·|φ) is a correlation function for φ ∈ Φ. We assume the
following quantities are specified:

1. Nominal parameter settings (β0, λ0, φ0) with β0 ∈ <Nβ , λ0 > 0, and φ0 ∈ int(Φ)

2. Indices {t1, t2, . . . , tN}.

We denote the multivariate Gaussian distribution having location vector µ and covariance matrix
Σ by N (µ,Σ). For specified N , generate a N -vector of errors

(εt1 , . . . , εtN) ∼ N (0N , (1/λ0)R(φ0)) ,

where 0N is the N -vector of zeroes and the (i, j) element of R(φ0) is given by r(ti, tj |φ0). To com-
plete the data generation process, we sample M -dimensional covariates {X1, . . . XN} independently
from the distribution N (0M , C), where C is a fixed covariance matrix. The i-th datum is calculated
as yti = gT (xi)β0 + εti , where g(·) is a Nβ-dimensional regression function. In vector-matrix form,

y = Gβ0 + ε ,

where

y = (yt1 , yt2 , . . . , ytN)T ,

G = [g(x1) g(x2) · · · g(xN)]T , and

ε = (εt1 , εt2 , . . . , εtN)T .

To generate Ñ additional responses, we sample:

1. {XN+1, . . . , XN+Ñ} independently from the distribution N (0M , C)

2. (εtN+1 , . . . , εtN+Ñ
)T ∼ N

(
0Ñ , (1/λ0)

(
R̃(φ0)− R̄(φ0)R−1(φ0)R̄T (φ0)

))
,

where the (i, j) element of R̃(φ0) is given by r(tN+i, tN+j |φ0), and the (i, j) element of R̄(φ0) is given
by r(tN+i, tj |φ0). Then ytN+i = gT (xN+i)β0 + εtN+i and the matrix-vector form of the augmented
data set follows. Note that this process of conditionally sampling errors preserves the correct joint
disribution of the augmented data vector.

In the following calculations, we assume the regression matrix G is fixed, so this will not be
explicitly denoted in the notation. Although (β, λ, φ) are fixed at (β0, λ0, φ0) to generate data as
above, our statistical analyses will assume some or all of (β0, λ0, φ0) are unknown. The sampling
distribution f(Y |β, λ, φ) of a random data set Y of size N is N (Gβ, (1/λ)R(φ)).

(Case 1.) The first verification scenario assumes that λ and φ are fixed at λ0 and φ0, respec-
tively. The Bayesian analysis places a prior distribution on β, which is given by the following:

1. π(β) =

∫
<Nβ

π(β|µ)π(µ) dµ,

2. π(β|µ) is N (µ, λ−1
0 Σ−1), and

132

CASL-U-2014-0038-000

3. π(µ) is N (µ0, λ
−1
0 Σ−1

0).

These assumptions imply that the marginal prior π(β) is N
(
µ0, λ

−1
0

(
Σ−1

0 + Σ−1
))

.
The posterior distribution of µ is N

(
µ1(φ0), λ−1

0 Σ1(φ0)
)
, where

Σ−1
1 (φ0) = Σ0 +

(
Σ−1 +

(
GTR−1(φ0)G

)−1
)−1

and

µ1(φ0) = Σ1(φ0)

[(
Σ−1 +

(
GTR−1(φ0)G

)−1
)−1

β̂(φ0) + Σ0µ0

]
for β̂(φ0) =

(
GTR−1(φ0)G

)−1
GTR−1(φ0) y.

The posterior distribution of β is N
(
µ2(φ0), λ−1

0 Σ2(φ0)
)
, where

Σ−1
2 (φ0) =

(
Σ−1

0 + Σ−1
)−1

+GTR−1(φ0)G and

µ2(φ0) = Σ2(φ0)
[(
GTR−1(φ0)G

)
β̂(φ0) +

(
Σ−1

0 + Σ−1
)−1

µ0

]
.

A noninformative prior for β, π(β) ∝ 1, results in an improper posterior distribution of µ. Note
that assuming a noninformative prior for µ, π(µ) ∝ 1, implies π(β) ∝ 1. The posterior distribution
of β is as above, with

µ2(φ0) = β̂(φ0) and Σ2(φ0) =
(
GTR−1(φ0)G

)−1
. (A.1)

The predictive distribution of Q future responses Ỹ = (Yt̃1 , Yt̃2 , . . . , Yt̃Q)T associated with regres-

sion matrix G̃ = [g(x̃1) g(x̃2) · · · g(x̃Q)]T and the Q-variate error vector ε̃Q = (εt̃1 , εt̃2 , . . . , εt̃Q)T

is N
(
µ̃(φ0), λ−1

0 Σ̃(φ0)
)

, where

µ̃(φ0) = G̃µ2(φ0) + R̄(φ0)R−1(φ0) (y −Gµ2(φ0)) and

Σ̃(φ0) = R̃(φ0)− R̄(φ0)R−1(φ0)R̄T (φ0) + H̃(φ0)Σ2(φ0)H̃(φ0)T

for H̃(φ0) = G̃− R̄(φ0)R−1(φ0)G. Here, the (i, j) element of R̃(φ0) is given by r(t̃i, t̃j |φ0), and the
(i, j) element of R̄(φ0) is given by r(t̃i, tj |φ0).

(Case 2.) The second verification scenario assumes that φ is fixed at φ0. The Bayesian analysis
places a prior distribution on (β, λ), which is given by the following:

1. π(β|λ) =

∫
<Nβ

π(β|µ, λ)π(µ|λ) dµ,

2. π(β|µ, λ) is N (µ, λ−1Σ−1),

3. π(µ|λ) is N (µ0, λ
−1Σ−1

0), and

4. π(λ) is Gamma(a, b).

These assumptions imply that the marginal prior π(β|λ) is N
(
µ0, λ

−1
(
Σ−1

0 + Σ−1
))

.

133

CASL-U-2014-0038-000

The posterior distribution of λ is Gamma(a1, b1(φ0)), where

a1 = (2a+N)/2

b1(φ0) =

(
2b+

(
y −Gβ̂(φ0)

)T
R−1(φ0)

(
y −Gβ̂(φ0)

)
+
(
β̂(φ0)− µ0

)T
Σ−1

3 (φ0)
(
β̂(φ0)− µ0

))
/2

for Σ3(φ0) = Σ−1
0 + Σ−1 +

(
GTR−1(φ0)G

)−1
.

A noninformative prior for β, π(β) ∝ 1, results in the posterior distribution of λ given above,
with

a1 = (2a+N −Nβ)/2 and b1(φ0) =

(
2b+

(
y −Gβ̂(φ0)

)T
R−1(φ0)

(
y −Gβ̂(φ0)

))
/2 . (A.2)

A noninformative prior for λ, π(λ) ∝ (1/λ), results from taking a = b = 0. Note that π(β, λ) ∝
(1/λ) is the Jeffreys noninformative prior.

We denote the d-variate t distribution having ν degrees of freedom, location vector µ, and scale
matrix Σ by Td(ν, µ,Σ). The mean of this distribution is µ if ν > 1 and the covariance matrix of
this distribution is νΣ/(ν − 2) if ν > 2. The posterior distributions of µ and β are given by

π(µ|y) is TNβ (2a1, µ1(φ0), b1(φ0)Σ1(φ0)/a1)

π(β|y) is TNβ (2a1, µ2(φ0), b1(φ0)Σ2(φ0)/a1) .

For the noninformative prior π(β) ∝ 1, as before the posterior distribution of µ is improper. The
quantities µ2(φ0), Σ2(φ0) from (A.1) and a1, b1(φ0) from (A.2) are utilized in the above expression
for the posterior distribution of β, where again a = b = 0 for π(λ) ∝ (1/λ).

The predictive distribution of Ỹ is given by

π(Ỹ |y) is TQ
(

2a1, µ̃(φ0), b1(φ0)Σ̃(φ0)/a1

)
.

(Case 3.) The third verification scenario allows φ to be random. The Bayesian analysis places
a prior distribution on (β, λ, φ), which is given by π(β, λ, φ) = π(β, λ)π(φ) where π(β, λ) is specified
as in the previous scenario. The form of π(φ) used in verification testing will be provided in the
following section. Our goal in this scenario is to numerically approximate the marginal posterior
distributions of λ, µ, and β:

π(λ|y) =

∫
Φ
π(λ|y, φ)π(φ|y) dφ

π(µ|y) =

∫
Φ
π(µ|y, φ)π(φ|y) dφ

π(β|y) =

∫
Φ
π(β|y, φ)π(φ|y) dφ .

The distributions π(λ|y, φ), π(µ|y, φ), and π(β|y, φ) are given analytically in the previous scenario.
That leaves π(φ|y), which is given as follows:

π(φ|y) ∝ π(φ)

b1(φ)a1 det (R(φ))1/2 det (GTR−1(φ)G)1/2 det (Σ3(φ))1/2
.

134

CASL-U-2014-0038-000

Quadrature is used to compute the normalizing constant

c(y) =

∫
Φ

π(φ) dφ

b1(φ)a1 det (R(φ))1/2 det (GTR−1(φ)G)1/2 det (Σ3(φ))1/2

so that

π(φ|y) =
c−1(y)π(φ)

b1(φ)a1 det (R(φ))1/2 det (GTR−1(φ)G)1/2 det (Σ3(φ))1/2
.

For the noninformative prior π(β) ∝ 1,

π(φ|y) =
c−1(y)π(φ)

b1(φ)a1 det (R(φ))1/2 det (GTR−1(φ)G)1/2

for

c(y) =

∫
Φ

π(φ) dφ

b1(φ)a1 det (R(φ))1/2 det (GTR−1(φ)G)1/2
,

where a1, b1(φ) are taken from (A.2) and a = b = 0 for π(λ) ∝ (1/λ).
The predictive distribution of Ỹ can also be numerically approximated:

π(Ỹ |y) =

∫
Φ
π(Ỹ |y, φ)π(φ|y) dφ .

A.2 Verification Tests

A simple linear regression model, g(x) = (1, x1, x2, . . . , xM)T , is specified for all verification ex-
amples. The dimension of β is therefore Nβ = M + 1. A wide range of covariate dimensions are
considered, M ∈ {2, 10, 50, 100, 500, 1000}.

The verification examples proceed by considering successively more complex specifications of
the correlation function r(t1, t2|φ):

1. r(ti, tj) = δti,tj

2. r(ti, tj |φ) = δti,tj + φ(1− δti,tj), φ ∈ [0, 1)

3. r(ti, tj |φ) = φ|i−j|, −1 < φ < 1

4. r(ti, tj |φ) = exp
[
−(xi − xj)TDφ(xi − xj)

]
, where Dφ = diag(φ1, . . . , φNβ) and φi ≥ 0 for

i = 1, . . . , Nβ.

The first case describes the standard regression setting in which errors are uncorrelated. The second
case describes equi-correlated errors, for which all pairwise correlations are equal. The third case
describes an AR(1) correlation structure for errors associated with observations indexed by time.
The pairwise correlation between errors decays as a function of separation in time. The final case
specifies a Gaussian correlation for errors associated with observations indexed by covariates. The
pairwise correlation between errors decays as a function of weighted distance between the covariate
vectors associated with the corresponding observations.

The first three correlation functions admit explicit expressions for the inverse R−1(φ) and de-
terminant det (R(φ)),

135

CASL-U-2014-0038-000

1. IN and 1

2. 1
1−φ

[
IN − φ

1+(N−1)φJN
]

and (1− φ)N−1(1 + (N − 1)φ)

3. 1
1−φ2

1 −φ 0 0 · · · 0 0

−φ 1 + φ2 −φ 0 · · · 0 0

0 −φ 1 + φ2 −φ · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 + φ2 −φ
0 0 0 0 · · · −φ 1

and (1− φ2)N−1 ,

where IN is the N ×N identity matrix and JN is the N ×N matrix of ones.
For data sample sizes, we consider {1, 2, 3, 10, 100, 1000, 104, 105, 106} for the first three correla-

tion functions, and {1, 2, 3, 10, 100, 1000} for the fourth correlation function (sample size limited by
inverse and determinant calculations). Small sample sizes {1, 2, 3} will allow MCMC sampling from
heavy-tailed posterior distributions to be compared with known analytical forms (specifically, the
multivariate t distributions of the second and third analyses). Large sample sizes allow verification
of regression parameter and error variance point estimate convergence (β̂ → β0 and b1/a1 → λ−1

0)
for the first correlation function. Each case will be structured so that the number of random pa-
rameters does not exceed the sample size. For example, if N = 1, only the first scenario is analyzed
with a single random regression parameter β0.

Two prior specifications will be considered: (a) π(µ, β, λ) ∝ (1/λ) (noninformative) and (b)
Σ0 = q INβ for fixed 0 < q � 1, and Σ = diag({ri, i = 1, . . . , Nβ}) for fixed ri > 0 (proper).
Both cases take a = b = 0. For the first correlation function, case (b) allows verification of the
convergence of the posterior distribution of µ to the Gaussian distribution having mean vector and
covariance matrix

µ1 = Dββ0 +Dµµ0 and λ−1
0 Σ1 = diag({λ−1

0 /(q + ri), i = 1, . . . , Nβ})

where Dβ = diag({ri/(q+ ri), i = 1, . . . , Nβ}) and Dµ = diag({q/(q+ ri), i = 1, . . . , Nβ}). For each
of these cases, we take π(φ) ∝ 1 for the second and third correlation function options. For the
fourth option, assume the inputs x satisfy ` ≤ x ≤ u and let ρi = ρi(φ) = exp

[
−φ(ui − `i)2/4

]
for

φ ≥ 0. The parameter ρi ∈ (0, 1] represents a correlation length, and we take ρi ∼ Beta(aρ, bρ) with
(aρ, bρ) = (1, 0.1) independently for i = 1, . . . ,M as the prior distribution for ρ = (ρ1, . . . , ρM). We
then have

π(φ) ∝
M∏
i=1

[ρi(φi)]
aρ [1− ρi(φi)]bρ−1 χ[0,∞)(φi)

where χ[0,∞)(φ) is the characteristic function taking value 1 for φ ≥ 0 and 0 for φ < 0.
Bayesian calibration results for these examples are detailed in Section 6.2.6.

136

CASL-U-2014-0038-000

Appendix B

Procedure for Running COBRA-TF
Studies

This section provides a brief description of how to perform the COBRA-TF studies described in
Chapter 7 with the model detailed in Section 2.3 on one of the CASL compute machines using the
VERA software environment. This assumes that the steps necessary to log on to one of the various
CASL machines, e.g. u233, u235, etc., have been successfully completed.

At present there are two choices for running a VERA VUQ study. One choice is to use the
“mainline” codes and utilities that are formally part of the VERA-CS software. This code is tested
nightly and adheres to the software quality standards defined by VERA-CS. The alternative is to
use an extended capability representing the most current development activities but which is not
included in VERA nightly testing. This code and utilities reside in a collection of repositories forked
from the mainline. Regardless of which choice is made, the following project directory structure is
required:

VERA

|

-- Trilinos

| |

| -- packages

| |

| -- TriKota

| |

| -- Dakota

|

-- COBRA-TF

|

-- VERAInExt

|

-- LIMEExt

|

-- PSSDriversExt

|

-- VUQDemos

Table B.1 shows the locations from which to clone each repository for either choice.

137

CASL-U-2014-0038-000

Table B.1: Code repository locations for either “mainline” or “vuq fork” versions of CASL VUQ.

Repository Name mainline vuq fork

VERA casl-dev:/git-root/VERA casl-dev:/git-root/VERA

Trilinos casl-dev:/git-root/Trilinos casl-dev:/git-root/Trilinos

Dakota casl-dev:/git-root/Dakota casl-dev:/git-root/Dakota

COBRA-TF casl-dev:/git-root/COBRA-TF casl-dev:/home/vuq-root/COBRA TF vuq fork

VERAInExt casl-dev:/git-root/VERAInExt casl-dev:/git-root/VERAInExt

LIMEExt casl-dev:/git-root/LIMEExt casl-dev:/git-root/LIMEExt

PSSDriversExt casl-dev:/git-root/casl vripss casl-dev:/home/vuq-root/casl vripss vuq fork

VUQDemos casl-dev:/git-root/VUQDemos casl-dev:/home/vuq-root/VUQDemos vuq fork

For example, Listing B.1 shows the steps to set up a CASL VUQ project on a CASL machine
using the “vuq fork” collection of codes and tools. After the project has been created, it can be built
in a variety of ways. Probably the easiest approach and the one guaranteed to work is to make use
of the VERA checkin-test utility script. This should be done within a build directory separate from
the project source directory created above. For example, to build an optimized version of the project
that runs in serial the steps shown in Listing B.2 would be followed. This will perform a sequence of
steps which include configuring (i.e. creating Makefiles), building (i.e. invoking make) and testing
the project (i.e. invoking ctest). The option, “test-categories=WEEKLY”, enables the most com-
prehensive testing and can include some tests that require on the order of an hour to complete. A list
of tests can be obtained by going into the SERIAL RELEASE subdirectory and invoking “ctest -N”,
and a particular test can be run by specifying its name or regular expression encompassing its name,
e.g. “ctest -R single assembly”. If the project source directory is created in a location other than the
top-level user home directory, i.e. “˜/VERA”, then its location must be specified in the invocation
of the checkin-test script by adding the option, “–src-dir=$PATH TO TOP LEVEL VERA DIR”,
and the path must be absolute, e.g. “home/$USER ID/Projects/CASL/VERA”. Finally, it should
be noted that the checkin-test utility script currently requires that it be invoked from the sec-
ond level of a build directory tree. Any build directory structure of the following form would
work, “˜/SOME LEVEL 1 DIR/LEVEL 2 DIR” with the script residing and invoked from the
LEVEL 2 DIR.

138

CASL-U-2014-0038-000

Listing B.1: Steps to setup a vuq fork CASL VUQ project on one of the CASL machines

2 # Checkout top -level VERA source directory

git clone casl -dev:/git -root/VERA

4

Checkout Trilinos under VERA

6 cd VERA

git clone casl -dev:/git -root/Trilinos

8

Checkout Dakota in proper subdirectory under Trilinos

10 cd Trilinos/packages/TriKota

git clone casl -dev:/git -root/Dakota

12

Checkout Cobra -TF Thermal Hydraulics code under VERA

14 cd ../../../

git clone casl -dev:/home/vuq -root/COBRA_TF_vuq_fork COBRA -TF

16

Checkout VERA Common Input toolset under VERA

18 git clone casl -dev:/git -root/VERAInExt

20 # Checkout LIME multi -physics coupling driver under VERA

git clone casl -dev:/git -root/LIMEExt

22

Checkout VERA interfaces to CASL application codes under VERA

24 git clone casl -dev:/home/vuq -root/casl_vripss_vuq_fork PSSDriversExt

26 # Checkout CASL VUQ toolset under VERA

git clone casl -dev:/home/vuq -root/VUQDemos_vuq_fork VUQDemos

Listing B.2: Steps to build a vuq fork CASL VUQ project on one of the CASL machines

1

Create a build directory

3 mkdir -p CASL_BUILDS/VUQ_BUILD

cd CASL_BUILDS/VUQ_BUILD

5

Create a link to the checkin -test utility script in the source project directory

7 ln -s ~/VERA/cmake/ctest/drivers/fissile4/checkin -test -vera.sh

9 # Invoke the script to build an optimized serial version of the project

./checkin -test -vera.sh --extra -repos -type=Nightly --test -categories=WEEKLY \

11 --default -builds=SERIAL_RELEASE --enable -packages=VUQDemos --local -do-all

139

CASL-U-2014-0038-000

Bibliography

[1] B. M. Adams, L. E. Bauman, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, M. S. Ebeida, M. S.
Eldred, P. D. Hough, K. T. Hu, J. D. Jakeman, L. P. Swiler, and D. M. Vigil. Dakota, a
multilevel parallel object-oriented framework for design optimization, parameter estimation,
uncertainty quantification, and sensitivity analysis: Version 5.4 user’s manual. Technical Re-
port SAND2010-2183, Sandia National Laboratories, Albuquerque, NM, Updated Nov. 2013.
Available online from http://dakota.sandia.gov/documentation.html.

[2] B. M. Adams, L. E. Bauman, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, M. S. Ebeida, M. S.
Eldred, P. D. Hough, K. T. Hu, J. D. Jakeman, L. P. Swiler, and D. M. Vigil. Dakota, a
multilevel parallel object-oriented framework for design optimization, parameter estimation,
uncertainty quantification, and sensitivity analysis: Version 5.4 reference manual. Techni-
cal Report SAND2010-2184, Sandia National Laboratories, Albuquerque, NM, Updated Nov.
2013. Available online from http://dakota.sandia.gov/documentation.html.

[3] B. M. Adams, L. E. Bauman, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, M. S. Ebeida, M. S.
Eldred, P. D. Hough, K. T. Hu, J. D. Jakeman, L. P. Swiler, and D. M. Vigil. Dakota, a
multilevel parallel object-oriented framework for design optimization, parameter estimation,
uncertainty quantification, and sensitivity analysis: Version 5.4 theory manual. Technical Re-
port SAND2011-9106, Sandia National Laboratories, Albuquerque, NM, Updated Nov. 2013.
Available online from http://dakota.sandia.gov/documentation.html.

[4] J. S. Arora. Introduction to Optimum Design. McGraw-Hill, New York, 1989.

[5] M. N. Avramova. CTF: A thermal hydraulic sub-channel code for LWR transient analyses,
users manual. Technical report, Pennsylvania State University, February 2009.

[6] L. S. Bastos and A. O’Hagan. Diagnostics for Gaussian process emulators. Technometrics,
51:425–438, 2009.

[7] G. E. P. Box and D. W. Behnken. Some new three level designs for the study of quantitative
variables. Technometrics, 2:455–475, 1958.

[8] G. E. P. Box and K. B. Wilson. On the experimental attainment of optimum conditions (with
discussion). Journal of the Royal Statistical Society Series B, 13:1–45, 1951.

[9] N. Cressie. Statistics of Spatial Data. John Wiley and Sons, New York, 1991.

[10] K. R. Dalbey, A. A. Giunta, M. D. Richards, E. C. Cyr, L. P. Swiler, S. L. Brown, M. S. Eldred,
and B. M. Adams. Surfpack user’s manual: Version 1.1. Technical report, Sandia National

140

CASL-U-2014-0038-000

http://dakota.sandia.gov/documentation.html
http://dakota.sandia.gov/documentation.html
http://dakota.sandia.gov/documentation.html

Laboratories, Albuquerque, NM, 2006. Available online from http://dakota.sandia.gov/

packages/Surfpack.

[11] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman &
Hall/CRC, Boca Raton, 1997.

[12] R. Ghanem and J. R. Red-Horse. Propagation of probabilistic uncertainty in complex physical
systems using a stochastic finite element technique. Physica D, 133:137–144, 1999.

[13] R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-
Verlag, New York, 1991.

[14] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, San Diego,
CA, 1981.

[15] Heikki Haario, Marko Laine, Antonietta Mira, and Eero Saksman. DRAM: Efficient adaptive
MCMC. Statistics and Computing, 16:339–354, 2006.

[16] R. T. Haftka and Z. Gurdal. Elements of Structural Optimization. Kluwer, Boston, 1992.

[17] W. E. Hart. The Coliny project. Web site, 2007.

[18] A. S. Hedayat, N. J. A. Sloane, and J. Stufken. Orthogonal Arrays: Theory and Applications.
Springer, New York, 1999.

[19] D. Higdon, J. Gattiker, B. Williams, and M. Rightley. Computer model calibration using
high-dimensional output. Journal of the American Statistical Association, 103(482):570–583,
2008.

[20] E. T. Jaynes and G. Larry Bretthorst. Probability theory : the logic of science. Cambridge
University Press, Cambridge, UK; New York, NY, 2003.

[21] C. T. Kelley. Implicit Filtering. SIAM, 2011.

[22] M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Journal of the
Royal Statistical Society, 63:425–464, 2001.

[23] J. L. Loeppky, J. Sacks, and W. J. Welch. Choosing the sample size of a computer experiment:
A practial guide. Technometrics, 51:366–376, 2009.

[24] G. Matheron. The theory of regionalized variables and its applications. Les Cahiers du Centre
de morphologie mathématique de Fontainebleau. École national supérieure des mines, 1971.

[25] M. D. Morris. Factorial sampling plans for preliminary computational experiments. Techno-
metrics, 33(2):161–174, 1991.

[26] V. A. Mousseau et al. VUQ strategy. Technical Report CASL-U-2014-XXXX-YYY, Oak Ridge
National Laboratory, March 2014. In preparation.

[27] R. H. Myers and D. C. Montgomery. Response Surface Methodology: Process and Product
Optimization Using Designed Experiments. John Wiley & Sons, Inc., New York, 1995.

141

CASL-U-2014-0038-000

http://dakota.sandia.gov/packages/Surfpack
http://dakota.sandia.gov/packages/Surfpack

[28] J. Nocedal and Wright S. J. Numerical Optimization. Springer Series in Operations Research.
Springer, New York, 1999.

[29] W.T. Nutt and G.B. Wallis. Evaluation of nuclear safety from the outputs of computer codes
in the presence of uncertainties. Reliability Engineering and System Safety, 83:57–77, 2004.

[30] W. L. Oberkampf, M. M. Pilch, and T. G. Trucano. Predictive capability maturity model for
computational modeling and simulation. Technical Report SAND2007-5948, Sandia National
Laboratories, October 2007.

[31] Scott Palmtag. Coupled single assembly solution with VERA (problem 6). Technical Report
CASL-U-2013-0150-000, Oak Ridge National Laboratory, 2013.

[32] Robert Salko. CTF list of global variables. Github code repository, 2013.

[33] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity Analysis in Practice: A
Guide to Assessing Scientific Models. John Wiley & Sons, 2004.

[34] R. C. Smith. Uncertainty Quantification: Theory, Implementation and Applications. SIAM,
Philadelphia, PA, 2014.

[35] A. Solonen, P. Ollinaho, M. Laine, H. Haario, J. Tamminen, and H. Järvinen. Efficient MCMC
for climate model parameter estimation: parallel adaptive chains and early rejection. Bayesian
Analysis, 7(3):715–736, 2012.

[36] R. Sues, M. Aminpour, and Y. Shin. Reliability-based multidisciplinary optimization for
aerospace systems. In Proc. 42rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference, number AIAA-2001-1521, Seattle, WA, April 16-19 2001.

[37] L.P. Swiler and V.J. Romero. JANNAF V&V guide: A survey of advanced probabilistic
uncertainty propagation and sensitivity analysis methods. Technical Report SAND2013-5456P,
Sandia National Laboratories, Albuquerque, NM, 2013.

[38] G. N. Vanderplaats. Numerical Optimization Techniques for Engineering Design: With Ap-
plications. McGraw-Hill, New York, 1984.

[39] J.A. Vrugt, C.J.F. Ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson. Treatment of in-
put uncertainty in hydrological modeling: Doing hydrology backward with markov chain monte
carlo, simulation. Water Research Resources, 44(12):W00B09, doi:10.1029/2007WR006720,
2008.

[40] J.A. Vrugt, C.J.F. Ter Braak, C. G. H. Diks, B. A. Robinson, J. M. Hyman, and D. Higdon.
Accelerating markov chain monte carlo simulation by differential evolution with self-adaptive
randomized subspace sampling. International Journal of Nonlinear Sciences and Numerical
Simulation, 10(3):273–290, 2009.

[41] S.S Wilks. Determination of sample sizes for setting tolerance limits. The Annals of Mathe-
matical Statistics, 12(1):91–96, 1941.

142

CASL-U-2014-0038-000

[42] Y.-T. Wu, Y. Shin, R. Sues, and M. Cesare. Safety-factor based approach for probability-based
design optimization. In Proc. 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, number AIAA-2001-1522, Seattle, WA, April 16–19
2001.

143

CASL-U-2014-0038-000

	Overview
	Manual Contents
	Getting Started with Dakota
	Acknowledgments

	Application Example Problems
	Cantilever beam
	General Linear Model Verification Test Suite
	COBRA-TF Thermal-Hydraulics Simulation Problem
	COBRA-TF Simulator Overview
	COBRA-TF test problem description
	VUQ Parameters in COBRA-TF Problem 6

	Sensitivity Analysis
	Terminology
	Local Versus Global Sensitivity
	Sensitivity Metrics

	Recommended Methods
	Centered Parameter Study
	Multidimensional Parameter Study
	Global LHS Sampling
	PSUADE/Morris Method

	Summary and Additional Approaches

	Surrogate Models
	Polynomial Regression Models
	Fitting Polynomial Surrogates in Dakota

	Kriging and Gaussian Process Models
	Fitting Kriging Surrogates in Dakota

	Summary

	Optimization and Deterministic Calibration
	Terminology and Problem Formulations
	Special Considerations for Calibration

	Recommended Methods
	Gradient-Based Local Methods
	Derivative-Free Local Methods
	Derivative-Free Global Methods

	Summary and Additional Approaches

	Uncertainty Quantification
	Uncertainty Propagation
	Sampling Methods
	Stochastic Polynomial Methods
	Verification
	Prediction Intervals
	Uncertainty Propagation: Cantilever Beam Example

	Bayesian Model Calibration
	Direct Implementation of Bayes' Relation
	Sampling Based Metropolis Algorithms
	Model Calibration and Surrogate Models
	Verification
	Synthetic Data
	Bayesian Calibration Examples

	COBRA-TF VUQ Studies
	Initial Parameter Studies with Two Power Distributions
	COBRA-TF Sensitivity Studies
	Centered Parameter Study
	Latin hypercube sampling studies
	Morris Screening
	Screening to Reduce Parameters

	Calibration Studies
	Deterministic Calibration
	Surrogate Construction
	Bayesian Calibration

	General Linear Model Verification Test Suite
	Verification Scenarios
	Verification Tests

	Procedure for Running COBRA-TF Studies

