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ABSTRACT 
 

The construction of surrogate models for high fidelity models is now considered an important 
objective in support of all engineering activities which require repeated execution of the 
simulation, such as verification studies, validation exercises, and uncertainty quantification. The 
surrogate must be computationally inexpensive to allow its repeated execution, and must be 
computationally accurate in order for its predictions to be credible. This manuscript introduces a 
new surrogate construction approach that reduces the dimensionality of the state solution via a 
range-finding algorithm from linear algebra. It then employs a proper orthogonal decomposition-
like approach to solve for the reduced state. The algorithm provides an upper bound on the error 
resulting from the reduction. Different from the state-of-the-art, the new approach allows the user 
to define the desired accuracy a priori which controls the maximum allowable reduction. We 
demonstrate the utility of this approach using an eigenvalue radiation diffusion model, where the 
accuracy is selected to match machine precision. Results indicate that significant reduction is 
possible for typical reactor assembly models, which are currently considered expensive given the 
need to employ very fine mesh many group calculations to ensure the highest possible fidelity for 
the downstream core calculations. Given the potential for significant reduction in the 
computational cost, we believe it is possible to rethink the manner in which homogenization 
theory is currently employed in reactor design calculations. 
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1. INTRODUCTION 

 
The trade-off between accuracy and computational efficiency has always played an essential role 
in real world engineering calculations. As the accuracy requirements become more stringent, the 
complexity of the models continues to increase which is a reflection of the more detailed 
strategies employed to calculate the solution or the more detailed models representing our 
improved understanding about the physical phenomena. The complexity of the models often 
increases at a higher rate than the increase in computer power which renders their repeated 
execution for engineering purposes computationally inefficient or impractical. To combat this 
challenge, scientists have invested into two major strategies: (a) strategies to accelerate the 
solution of the complex model’s equations via development of better solution algorithms, i.e., 
alternative numerical and discretization schemes; and (b) strategies to develop computationally 
efficient models with reduced complexity and acceptable accuracy. The later approach is referred 
to as ‘reduced order modeling’ (ROM) which represents the subject of this manuscript. 
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ROM methods have been developed by many computational scientists and practitioners from 
many different backgrounds [1]. The less complex models generated by ROM methods are often 
referred to as surrogate models and sometimes meta-models. Response surface methods (RSM) 
represent the most prominent ROM approach for building surrogates at the response level. 
Examples of RSM methods include polynomial chaos, stochastic collocation, regression 
techniques, and generalized Fourier expansions [2-5].This type of reduction has been very 
popular as it requires no intimate knowledge of the models being reduced. It requires only a 
nonintrusive access to the model where it is executed in a forward manner a number of times. 
Next, an assumed surface is used to find the best fit between the model predicted responses and 
those predicted by assumed surface. The efficiency of the RSM methods depends on the number 
of original model executions that must be completed to find an RSM model with acceptable 
accuracy. Generally, for models with many input parameters, RSM methods prove to be 
computationally inefficient.  
 
Projection methods, also referred to as reduced basis methods in some communities, represent 
the most successful approach when reduction is done at the state level. Projection-type methods 
are all based on the premise that the variability of the state can be well approximated by a 
subspace. This means that despite the high dimensional nature of the state, it only varies along a 
subspace of smaller dimension, which if identified, can be used to transform the problem into 
one with smaller dimensions. Approximate balanced truncation methods [6], Krylov-subspace 
methods [7], Proper Orthogonal Decomposition (POD) [8] are examples of projection methods 
done at the state level. This type of reduction has been primarily exercised to accelerate the 
convergence of the solution, especially for models where the state must be evaluated at many 
points in the phase space. By performing the reduction, the computational overhead becomes 
dependent on the dimension of the subspace in the reduced model versus the number of state 
points in the original model.  
 
In earlier work, the subspace determined by projection methods is used to reduce the 
dimensionality of the forward model at the reference parameters values only [6-8]. Recently, 
people start to construct the subspace to capture the variability of the solution for all possible 
parameters perturbations [9-13]. We present in this manuscript an ROM approach that constructs 
a surrogate in the state space with the objective to reduce the computational cost required to find 
the state variations for all possible parameters perturbations under which the high fidelity model 
is expected to be exercised.  
 

2. STATE-BASED SURROGATE MODELING 
 
2.1.  Model Description 
 
Consider a generalized eigenvalue problem 
 
    uu   L F  (1) 

 
where one can consider n nL  , and n nF   are matrix operators that describe the 
numerically-discretized neutron transport loss and production operators, respectively;   is the 
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largest eigenvalue (equal to 1/ effk ) associated with the eigenvector n   which denotes the 

state (i.e. the flux for neutron diffusion theory) and sometimes called the fundamental forward 
flux solution. The ,L F  and   are dependent on the p model parameters described by a vector 

pu . 
 
Now, consider a response R that is a linear functional of the flux: 
 

  TR u    (2) 

 
with constraints: 
 
 T

N N   (3) 

 
where  u  is a vector whose elements are dependent on the parameters. The N   is a vector of 

weights that determine the normalization condition and N is the normalization constant.  
 
2.2.  Surrogate Model Construction 
 
Early works show that all possible perturbed fluxes belong to a small active subspace of size r, 
and any response variation due to any parameter perturbation can be easily determined by 
solving r adjoint equations employing r active responses [9,10]. If r is much smaller than n (the 
size of the state space), one can recast the solution of Eq. (1) in terms of a set of r base vectors 
belong to the active subspace. In doing so, one recognizes that the remaining n-r directions in the 
state phase space cannot change the solution of Eq. (1) as the state does not vary along these 
directions. It is shown below that by employing only r base vectors, one can calculate the change 
in the flux due to any parameter perturbation without solving any adjoint equation. 
 
Assume that the perturbed state/flux varies along a subspace   which is spanned by a basis or r 
independent vectors:  1 2, , , r   . Let the set of vectors:  1 2 , ,,r r n      represents a basis 

for the complementary subspace   in n  such that 
 
 n     
 
Now consider a general perturbation in the input parameters, the perturbed eigenvalue problem is 
given by: 
 

         uu   L F  (4) 

 
where ‘~’ indicates the perturbed terms and the corresponding perturbed flux can be rewritten as: 
 

     T T T     ΘΘ Θ Θ ΘΘ  (5) 
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where  1 2 , ,, r  Θ   and  1 2 , ,,r r n   
 Θ   are orthonormal matrices such that 

T T  ΘΘ Θ Θ I  is the identity matrix. To find the active subspace, we employ a range-finding 
algorithm to identifying its effective range that may be spanned by the columns of an 
orthonormal matrix n rΘ  .  
 
In earlier work, the size of the active subspace was identified via numerical experimentations 
[14]. Chaturantabut and Sorensen mentioned a heuristic estimation of the error bound which 
provide a reasonable qualitative estimate of the expected error. However, it is clearly not a 
rigorous bound [13]. In recent years, applied mathematicians were able to show that rigorous 
error bounds could be established using the following idea to construct the active subspace [15]. 
We briefly discuss how these bounds could be constructed, and refer the reader to Ref. [15] for 
excellent review on the mathematical literature on range-finding algorithms.  
 
Consider a matrix A where one is interested in identifying its effective range spanned by the 
columns of an orthonormal matrix n rΘ   such that some user-defined tolerance is satisfied in 

an upper bound sense, i.e.,  T  I ΘΘ A . It can be shown via the algorithm below that the 

range could be identified using randomized matrix vector products of the form: ipA where ip  is 

randomly generated:  
 

(a) Form a random vector ip , and calculate i iq p A  

(b) Using a Gram-Schmidt or other orthogonalization algorithm, calculate i  such that: 
T
i j ij    and    1 1span ,...., span ,....,i iq q   . 

(c) Append the column i  to form:  1 ... n i
i i   Θ   

(d) Calculate:  1 1
T

i i i iq q
  I Θ Θ  

(e) If iq   , stop, otherwise let 1i i   and go to step (a) 

 
This algorithm constructs a set of random vectors iq  which belong to the range of the matrix A . 

The algorithm is terminated when a new vector has only a small component orthogonal to the 
subspace spanned by the previous vectors. The   tolerance could be selected to match the 
stopping criterion for the flux that is employed in forward calculation to terminate the iterative 
process.  After a certain rank r is identified by the above algorithm, an upper bound on the error 
could be rigorously established as follows: 
 

(a) Pick a small integer s; 10s  is often very conservative. 

(b) Pick a sequence of s random Gaussian vectors   1

s

i i



 

(c) Calculate ( )T
i iz  I ΘΘ A  for 1,...,i s , where Θ  is identified by the algorithm above 

and has dimensions n r  
One can show that with probability at least1 10 s , the following statement is true: 
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1,...,

2
( ) 10 maxT

i
i s

z
 

 I ΘΘ A  (6)  

 
This statement allows one to define an upper bound on the error resulting from approximating 
the range of the matrix A by a subspace of size r. We denote the right hand side of Eq. (6) as the 
theoretical error: 
 

 theory
1,...,

2
10 max i

i s
z

 
  (7) 

 
Note that the computational cost of implementing this range-finding algorithm is proportional to 
the cost of generating r+s matrix-vector products. Earlier works show that these matrix-vector 
products could be emulated by executing the forward model r+s times, each with a random input 
parameters perturbation [9, 10]. The power of this algorithm is that it finds a hard upper-bound 
on the error. This allows the analyst to decide on the maximum allowable error a priori and 
employ the algorithm to pick the minimum rank r that satisfies this error criterion.  
 
Combining Eq. (4) and Eq. (5) gives 
 

         T Tu u  ΘΘ PF ΘΘPL  (8) 

 
where r nP   is the preconditioner, and we choose TP Θ  for simplicity, thus Eq. (8) 
becomes 
 

         T T T Tu u  Θ ΘΘ F ΘΘL Θ  (9) 

 

Let     ˆ, ,  and T T T  Θ LΘL F Θ FΘ Θ  , therefore, the surrogate model can be written as 
 

  ˆ ˆ ˆ  L F  (10) 
 

where  , , ˆ  and ˆr r r r r    L F    is the eigenvalue for the surrogate model.  
 
2.3.  State-Based Surrogate Modeling Algorithm 
 
The algorithm for state-base surrogate modeling can be summarized as follows: 
 
step 1: Random perturb the input parameter within certain ranges. 

step 2: Employing range-finding algorithm to construct the active subspace   1i

r

i



 such that: 

      1 2 1, , , ,  a, nd , ,n r T
r r r rR R    

   Θ Θ Θ I Θ   ; 

step 3: Construct the surrogate operator    ,  and T TΘ LΘ F ΘL FΘ ; 

step 4: Solve the surrogate model  ˆ ˆ ˆ  L F  for ˆ ˆand   ; 
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step 5: Calculate the unnormalized perturbed flux ˆ
u Θ ; 

step 6: Renormalize the perturbed flux 
T u

N u

N

S
 


 

 . 

 
Note that the bulk of the computational burden in this algorithm is in step 1 where the forward 
model is executed r times. The surrogate model can be easily solved if the size of the active 
subspace r is a small number. The rest of the computational burden involves only linear algebra 
operations which are computationally cheap when compared to the cost of executing the forward 
and/or adjoint model for uncertainty quantification.  
 

3. NUMERICAL EXPERIMENTS 
 
Two case studies are analyzed using MATLAB code. The first case is a seven-group diffusion 
model in 1-D slab geometry with two fuel assemblies [16], and the length of each mesh is 0.09 
cm. The state is described by the seven-group flux solution, and 
 

1 1 7 7
224 1 224 1 224

1568 1
1

g g                 

 
where the superscript denotes the energy group, and the subscript denotes the mesh number. We 
denote the fast group as the first four energy groups, and the thermal group as the left three 
energy groups. The responses represent the perturbed flux values at each point in the phase 

space, and we also define the thermal total flux value as: 
7 224

4 1
t

g i

g
h i 

 

 . The input parameters 

are represented by the seven-group cross sections. The model schematic is shown in Fig. 1. The 
cross sections are given in [17].  
 
 
 
 
 
 
 
 
 

Fig. 1a 7 Core Model 
 
 
 
 
 

 
Fig. 1b Design of the MOX Assembly 
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Fig. 1c Design of the Uranium Assembly 
 
 
 
 
 
 
 

Fig. 1d Pin Cell Design                      Fig. 1f Guide Tube 
 

Figure 1. Seven Group Diffusion Model Layouts 
 
The responses represent the perturbed flux values in the phase space. The state-based surrogate 
modeling algorithm is executed, and is tested for a perturbed model such that all cross sections 
perturbations were randomly selected from uniform distribution within 10% relative to their 
reference values. The exact perturbed responses are calculated using direct forward perturbation 
which requires a full forward model execution. Fig. 2 compares the real errors in the flux (rms) 
calculated by the surrogate model to the theoretical error predicted by randomized range-finding 
algorithm. The x-axis in Fig. 2 runs from 1 to 1568 over all space-energy indices for the flux, and 
errors in this figure are defined as 
 

 

2

, exact , approx

1 1

1
g g

i i

averag

G N

eg i

ms
N G

r
 

 

 
   

     

 
where N=224 denotes the total mesh points, G=7 denotes the total energy groups, average  

denotes the average unperturbed flux value over all phase space points, and theory  is given in Eq. 

7. In order to compare the real error to the theoretical error, we normalize the theoretical error in 
the following way 
 

 theory
theory

average G
rms

N



 
  

 
To check the adequacy of surrogate model for severe flux variations, the methodology is also 
employed to estimate perturbed flux resulting from the insertion of a control rod. The control rod 
is simulated by significantly increasing the absorption cross-section in pin cell 3 in MOX 
assembly. Fig. 3 shows the result in a similar manner to Fig. 2. Despite the huge change in the 
eigenvalue (approximately a 63% change from the reference value 1.0650), the state-based 
surrogate algorithm is able to calculate the perturbed flux below user-defined tolerance.  
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Figure 2. Comparisons of Flux Discrepancy versus r for 7 group 

 

 
Figure 3. Comparisons of Flux Discrepancy versus r for 7 group (w/ CR insertion) 

 
The second case is a two-group diffusion model with cross-sections condensed from the previous 
seven-group employing the flux distribution calculated from the previous diffusion model. 
Similar to previous case, the responses represent the perturbed flux values in the phase space. 
The state-based surrogate modeling algorithm is executed, and is tested for a perturbed model 
such that all cross sections perturbations were randomly selected from uniform distribution 
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within 10% relative to their reference values. The exact perturbed responses are calculated using 
direct forward perturbation which requires a full forward model execution. To understand the 
impact of energy condensation on the size of the active subspace, we employ the same model 
schematic as shown in Fig. 1. Fig. 4 shows the result in a similar manner to Fig. 2. For the sake 
of comparision, Let us pick user-defined error tolerance, say 610rms  . From Figs. 2 and 4 the 
corresponding sizes of the active subspace to meet this error tolerance is 93 and  365, 
respectively. Moreover, Fig. 5 shows the size of active subspace is almost linear dependent on 
the number of energy groups with lower order accuracy. This results implies that we can also 
employ the low-fidelity model to predict the size of active subspace for the high-fidelity model 
without execute the high-fidelity complex model over and over again. An interesting observation 
is that the size of the active subspace for the high fidelity is approximately 3.5 times higher than 
the low fidelity model. Recall that the high fidelity model is based on 7 groups whereas the low 
fidelity is based on 2 groups. This demonstrates that the reduction preserves the additional 
degrees of freedom employed by the high fidelity model to improve the accuracy of the model. 
Note that the 7G model employs additional degrees of freedom in the form of the scattering 
block where neutrons are allowed to scatter up and down between the various groups. Therefore, 
the degrees of freedom can be reduced if the scattering cross-sections are not perturbed. Fig. 6 
shows the reductions on the degrees of freedom compared to Fig. 5. If however the high fidelity 
model does not introduce any new information that are relevant to the responses of interest, the 
size of the reduced model will not increase. This was illustrated in a previous paper with the high 
fidelity model employing a fine mesh [9]. 
 

 
Figure 4. Comparisons of Flux Discrepancy versus r for 2 group 
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Figure 5. Analysis of Size of Active Subspace versus Energy Group 

 

 
Figure 6. Analysis of Size of Active Subspace versus Energy Group (without Perturbing 

Scattering Cross-Sections) 
 

 
Next, Fig. 7 compares the relative discrepancies in the eigenvalues between two-group diffusion 
model and seven-group diffusion model, and Fig. 8 compares the relative discrepancies in the 
thermal total flux value between the two models. 
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Figure 7. Analysis of Surrogate Model Errors versus r (Eigenvalue) 

 

 
Figure 8. Analysis of Surrogate Model Errors versus r (Thermal Total Flux) 

 
4. CONCLUSIONS 
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inherent in the original complex model. This is achieved by projecting the original operator onto 
the active subspace, and solving the surrogate eigenvalue problem only in this active subspace. 
By restricting the solution to only an active subspace, the new method may be viewed as an 
effective way to boost the performance of uncertainty quantification on the original complex 
model. Moreover, rigorous upper bound on the error can determined for the surrogate model. 
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