Impact

Nuclear Industry Performance Challenges

CASL looked 6 key performance challenges the nuclear industry is facing for which advanced modeling and simulation tools could be applied. The challenge problems addressed issues in reactor operation, fuel management, licensing, and materials performance. These issues have a high economic impact on fuel cycle costs, capacity factors, and plant lifetimes where the opportunity in terms of reduced costs and increased revenue are in the hundreds of millions of dollars.

Challenge Problem Success

Deployment to Industry

A significant effort was put forth in the final years of CASL to complete work on the CASL challenge problems as well as pivot towards activities to enable broad VERA deployment to industry. Guidance was provided by the CASL Industry Council, Science Council, and Board of Directors to achieve the objectives outlined in the initial CASL proposal and renewal application, as reflected in the following end-state vision for the program:

By the end of the CASL operational period, CASL will have successfully developed and deployed advanced M&S technologies that can be used with confidence to solve the CASL challenge problems and address future nuclear energy industry challenges, emerging issues, and evolving opportunities.

This result was achieved through implementation of an NQA-1 compliant Software Quality Assurance program, development of the VERA Users Group, and commercial licensing and distribution of the VERA code suite.

Industry Use of VERA

VERA applications represent a broad spectrum of design and operating conditions for the current and future operating fleet. The analyses performed represent a key component of the VERA verification and validation plan and assures confidence in the robustness of the software’s physics, geometry, and numerical solvers. Steady-state core follow and startup physics analysis, which confirms reactivity and thermal margin as well as cycle energy production capability is the starting point for all other VERA applications. 

The table on the right shows the plant, operating cycles, reactor, and fuel type for which VERA benchmarking was performed. This list represents nearly the full spectrum of PWR reactors and operating fuel designs within the US nuclear fleet as well as the advanced LWR reactor designs, such as the NuScale SMR. The list represents reactors of different sizes, power density, cycle energy production, fuel products, burnable absorbers and core loading pattern design strategies. Note that each plant on the list has different requirements based on energy production requirements, requirements for load follow or coast down, its maintenance and fueling outage schedule, and fuel product transitions (which may impose additional constraints on thermal operating margins).

PlantCyclesReactor and Fuel Type
AP10001-5W Gen III+ 2-loop 17×17 XL
Byron 117-21W 4-loop 17×17
Callaway1-12W 4-loop 17×17
Catawba 11-9W 4-loop 17×17
Catawba 28-22W 4-loop 17×17
Davis-Besse12-15B&W 15×15
Farley23-27W 3-loop 17×17
Haiyang1W Gen III+ 2-loop 17×17 XL
Krško1-3, 24-28W 2-loop 16×16
NuScale1-8SMR
Oconee 325-30B&W 15×15
Palo Verde 21-16CE Systems 80 16×16
Sanmen1W Gen III+ 2-loop 17×17 XL
Seabrook1-5W 4-loop 17×17
Shearon HarrisSurrogateW 3-loop 17×17
South Texas 21-8W 4-loop 17×17 XL
Three Mile Island1-10B&W 15×15
V.C. Summer17-24W 3-loop 17×17
Vogtle 19-15W 4-loop 17×17
Watts Bar 11-18W 4-loop 17×17
Watts Bar 21-2W 4-loop 17×17